

background the course object participants lecturers course material course language location registration questions program publications registration form accommodation arrival MSc course 
A threeday course Large Eddy Simulation (LES), hybrid LESRANS, Detached Eddy Simulation (DES) and unsteady RANS. 

LES is suitable for bluffbody flows or flows at low Reynolds numbers. To extend LES to cover industrial flows at high Reynolds numbers, new approaches (hybrid LESRANS, DES, URANS, SAS, PANS, PITM) must be used. They are all based on a mix of LES and RANS. The course will give an introduction to LES and these new methods. LES, or any of the new approaches, is the first step when performing accurate CAA (Computational AeroAcoustics) Lectures will be given in the mornings; in the afternoons there will be workshops using Matlab on PC Workstations. In the workshops, the participants will use Matlab for analyzing SGS models, SAS, PANS, DES and DDES. Matlab scripts will be used to generate isotropic and anistropic (nonisotropic) synthetic turbulent fluctuations for inlet boundary conditions and embedded LES. The number of participants is limited to 16. 

BACKGROUND The development of computers and Computational Fluid Dynamics (CFD) has made the numerical simulation of complex fluid flow, combustion, aeroacoustics and heat transfer problems possible. Turbulent flow in threedimensional, complex geometries  unsteady or steady  can be dealt with. Presently CFD methods can replace, or complement, many experimental methods; we can use a numerical wind tunnel instead of an experimental one. Today, most CFD simulations are carried out with traditional RANS (ReynoldsAveraged NavierStokes). In RANS, we split the flow variables into one timeaveraged (mean) part and one turbulent part. The latter is modelled with a turbulence model such as keps or Reynolds Stress Model. For many flows it is not appropriate to use RANS, since the turbulent part can be very large and of the same order as the mean. Examples are unsteady flow in general, wake flows or flows with large separation. For this type of flows, it is more appropriate to use Large Eddy Simulation (LES). In order to extend LES to high Reynolds number flows new methods have recently been developed. These are called DES (Detached Eddy Simulation), URANS (Unsteady RANS), PITM (Partially Integrated Transport Model), PANS (Partially Averaged NavierStokes) or Hybrid LESRANS. They are all unsteady methods and they are a mixture of LES and RANS. In aeroacoustics the noise is generated by turbulence. The best way to accurately predict largescale turbulence is to carry out an unsteady simulation of the flow field (i.e. LES, DES, hybrid LESRANS or URANS). After that the noise is predicted separately in CAA (Computational AeroAcoustics) in which the largescale turbulence is used in analogy methods based on Lighthill, Kirchhoff or Ffowcs Williams. In LES, DES, URANS and Hybrid LESRANS the largescale part of the turbulence is solved for by the discretized equations whereas the smallscale turbulence is modelled. The definition of ''largescale'' varies in the different methods. Furthermore, the limit between ''largescale'' and ''smallscale' is often not well defined. Since turbulence is threedimensional and unsteady, it means that in all the methods the simulations must always be carried out as 3D, unsteady simulations. THE COURSE The course will give an introduction to LES, DES, hybrid LESRANS and unsteady RANS. During the lectures we will discuss the theory and during the workshops we will use simple Matlab programs to gain detailed insight in various numerical and modelling aspects. There will be a PC workstation for each participant at the workshops. The number of participant is limited to 16 We will address questions like:
Inlet boundary conditions are much more difficult in LES and hybrid LESRANS than in RANS. In RANS it is sufficient to prescribe timeaveraged profiles. In LES and hybrid LESRANS unsteady, turbulent fluctuations must be supplied. One alternative is to do a precursor DNS and store data at a crosssectional plane on disc which can be read in the subsequent LES or hybrid LESRANS simulation. Another alternative is to use synthesized turbulence. The participants will during the last workshop (Day 3) have the opportunity to learn how to to create synthesized turbulence using Matlab. Synthetic turbulent fluctuations are also important in Embedded LES in which an LES/DES region is embedded in a steady or unsteady RANS region. Usually the upstream region is a RANS region and the downstream region is LES or DES. Turbulent fluctuations must be added at the interface between RANS and LES to ensure a rapid transition from steady RANS where all turbulence is modelled to LES/DES where most of the turbulence is resolved. OBJECT The participants will be given an introduction to LES, DES, hybrid LESRANS and unsteady RANS. We expect many participants to be firstyear PhD students or users of inhouse CFD codes or commercial CFD packages for traditional RANS simulations. This course will give the required knowledge to do CFD predictions using also unsteady methods. PARTICIPANTS We believe that the course will be useful for engineers and PhD students working with problems including pure fluid flow, aeroacoustics, combustion and heat transfer in industry as well as at universities. The number of participants is limited to 16. LECTURER The lecturer at the course (both during lectures and workshops) will be Prof. Lars Davidson from the Division of Fluid Dynamics, Dept of Applied Mechanics, Chalmers University of Technology. COURSE MATERIAL
COURSE LANGUAGE The course material is in English and the lectures will be given in English. LOCATION The course will be held 911 November 2016, at Chalmers University of Technology, Göteborg. REGISTRATION Registration form should be submitted no later than October 10, 2016. The price is 14,700 SEK (excl. VAT) which includes course material, lunches, course dinner, coffee. For PhD students the fee is reduced to 11,400 SEK (excl. VAT). No refunding after October 10. The number of participants is limited to 16. QUESTIONS & FURTHER INFORMATION Please contact Lars Davidson tel. +46 (0) 31772 14 04, Email: lada@chalmers.se or Anna Stupak Chalmers Professional Education tel. +46 (0) 707 615185 Email:anna.stupak@chalmers.se PROGRAM DAY 1 (10.00  19.00)
DAY 3 (8.00  17.00)


