
CFD with OpenSource Software
A course at Chalmers University of Technology

Taught by
Håkan Nilsson

Project work:

Implementation of a
myinterFoamDiabatic

Solver with OpenFOAM
Developed for OpenFOAM-1.7.x

Requires:

 Author: Peer reviewed by:
Qingming Liu Ehsan Yasari

Disclaimer: This is a student project work, done as part of a course where OpenFOAM and some
other OpenSource software are introduced to the students. Any reader should be aware that it
might not be free of errors. Still, it might be useful for someone who would like learn some details
similar to the ones presented in the report and in the accompanying les.

November 22 , 2011

2

Contents

Chapter 1

Introduction 3

Mathematical background 4

Implementation of myinterFoamDiabatic 5

3.1 Implementation of a new transport model 5

3.2 Implementation of the solver myinterFoamDiabatic 8

3.3 Setup the case in OpenFOAM 12

Reference 23

3

Chapter 1

Introduction

Multi-phase simulation has been a very important topic both in industry and academy. There are

several multi-phase solvers available in OpenFOAM. interFoam is one of the widely used solver

which can be applied for isothermal 2 incompressible flow calculation. However, as the other multi-

phase solvers in OpenFOAM, it cannot be used to simulate non-isothermal phenomena due to the lack

of energy equation implementation
1
. This project is aiming to implement a new non-isothermal solver

called myinterFoamDiabatic based on the solver interFoam by introducing energy equation. A

simulation tutorial on bubbly 2 phase flow through a mini channel is done as well.

Since the bubbly flow in microchannel is a diabatic process, we need to implement thermal equations

which have not included in interFoam so far. We need to add new thermalphysical properties of 2

phase as well.

The tasks of this project can be summarized as follows:

 Implementing “myInterFoamDiabatic” based on “interFoam” which using

VOF method for simulation of two phase isothermal flow by adding energy

equation as well as implementing a heat flux boundary condition.

 Set up the bubbly flow case in OpenFOAM.

 Study the flow pattern and pressure drop of elongated bubble flow in micro-

channels(with diameter 1.7mm).

 Future plan: adding source terms to the transport equations.

4

Chapter 2

Mathematical background

The governing equations in the new solver myinterFoamDiabatic are summarized as follows:

 (1)

 (2)

 (3)

 (4)

They are the momentum equation (equation 1) the mass equation (equation 2), the energy equation

(equation 3) and the volume fraction (equation 4).

Except the energy equation(eq. 3), the rest of equations has been implemented in the based solver

interFoam already, so all we need to do in this project is to implement this equation. However, for

simplicity, the source term (Φ) is assuming to be 0 at this project.

 In eq.3, and k denote the specific heat capacity and the thermal conductivity respectively. µ

is the viscosity.

 Figure 1 The VOF method2

The equation 4 is the volume fraction equation which will be used to capture the 2 phase interface by

using a VOF method.

The volume fraction field(α) determines the liquid volume fraction in each cell. It has a value of 0 in

all vapor cells, a value of 1 in all liquid cells and a value between 0 and 1 in cells that are cut by the

liquid-vapor interface
3

4
(Figure 1).

5

Chapter 3

Implementation of myinterFoamDiabatic

The myinterFoamDiabatic application has a structure according to Figure 2. It contains a solver

called myinterFoamDiabatic which called the shared library transportModels dynamically at

runtime. Due to the introducing of thermal properties, the transportModels library should be modified

to adapt the change. Hence we need to modify and compile the transportModels library independently

before compiling the solver and setting up the case.

Figure 2 The tree of transportModel

3.1 Implementation of a new transport model

Figure 3 The tree of transportModel

Before implementing the solver, we should modify the transportModels library which is calling at run

time by adding thermal properties for each phase and mixture.

 First, copy the model to our own directory by the following command:

myinterFoamdiabatic.C

#include"transportModels"

myinterFoamdiabatic

executable

Solver

transportModels.so

Library

transportModels.C

transportModels.H

transportModels/incompressible/

incompressibleTwoPhaseMixture

TwoPhaseMixture.C

TwoPhaseMixture.H

6

Then we need to add the specific heat capacity(cp1, cp2)and Prandtl number (Pr1, Pr2)for each phase.

Moreover, the thermal conductivity for the mixture is calculated according to the following

expression:

 (5)

Open the file twoPhaseMixture.H and declaring the specific heat capacity(cp1, cp2)and Prandtl

number s(Pr1, Pr2)for each phase by adding the following lines after line 67:

Modified lines after line 141 as follows:

const dimensionedScalar& rho2() const
{

return rho2_;
}; // line 141

//------------------------Modified---------------------//
const dimensionedScalar& Pr1() const

{
return Pr1_;

}

const dimensionedScalar& Pr2() const
{
return Pr2_;

};

const dimensionedScalar& cp1() const
{

return cp1_;
}

const dimensionedScalar& cp2() const
{

return cp2_;
};

//--------------------------End-----------------------//

dimensionedScalar rho2_; // line 67

//------------------------Modified---------------------//

dimensionedScalar cp1_;
dimensionedScalar cp2_;

dimensionedScalar Pr1_;
dimensionedScalar Pr2_;
//-------------------------End-----------------------//

cp -r $WM_PROJECT_DIR/src/transportModels $WM_PROJECT_USER_DIR/src

cd $WM_PROJECT_USER_DIR/src/transportModels/incompressible/
wclean

cd incompressibleTwoPhaseMixture

7

 Add the thermal conductivity, specific heat capacity and Prandlt number as follows:

Open the file twoPhaseMixture.C and defining the specific heat capacity(cp1, cp2)and Prandtl

numbers(Pr1, Pr2)for each phase by adding the following lines in line 92:

and following modification:

(
alpha1f*rho1*fvc::interpolate(nuModel1_->nu())

+ (scalar(1) - alpha1f)*rho2_*fvc::interpolate(nuModel2_->nu())
) /(alpha1f*rho1_ + (scalar(1) - alpha1f)*rho2_)

)
);
}

//-------------------------------------Modified--------------------------------------//

tmp<surfaceScalarField> twoPhaseMixture::kappaf() const
{

surfaceScalarField alpha1f =
min(max(fvc::interpolate(alpha1_), scalar(0)), scalar(1));

return tmp<surfaceScalarField>
(
new surfaceScalarField

(
"kappaf",
alpha1f*rho1_*cp1_*(1/Pr1_)*fvc::interpolate(nuModel1_->nu())
+ (scalar(1) - alpha1f)*rho2_*cp2_*(1/Pr2_)*fvc::interpolate(nuModel2_->nu())
)

);
}

//---End--------------------------------------//

tmp<surfaceScalarField> nuf() const;
//------------------------Modified---------------------//
 tmp<surfaceScalarField> kappaf() const;
//------------------------Modified---------------------//

rho2_(nuModel1_->viscosityProperties().lookup("rho2_"));
//---------------------------------------Modified-----------------------------------//
cp1_(nuModel1_->viscosityProperties().lookup("cp")),
cp2_(nuModel2_->viscosityProperties().lookup("cp")),

Pr1_(nuModel1_->viscosityProperties().lookup("Pr")),
Pr2_(nuModel2_->viscosityProperties().lookup("Pr")),

//---End--------------------------------------//

8

Usually it is better to compile the new library in a new directory (for instance, the user directory rather

than the default OpenFOAM src directory) . So in this case the new library was complied to the user

directory $FOAM_USER_LIBBIN by modifying the Make/files as follows:

Compiling the the new library by type command:

wmake libso

3.2 Implementation of the solver
myinterFoamDiabatic

The structure trees of the solvers of both based solver interFoam and derived solver

myinterFoamDiabatic are shown in Figure 4. As it indicate, there is a need to create a TEqn.H file

and modify several other files(alphaEqnSubCycle.H, interFoam.C, alphaEqn.H, CreateFields.H, Make

 directory) .

Figure 4 The tree of solver interFoam and myinterFoamDiabatic

interFoam

alphaEqnSubCycle.H

interFoam.C

correctPhi.H

UEqn.H

pEqn.H

alphaEqn.H

setDeltaT.H

CreateFields.H

Make/

alphaCourantNo.H

myinterFoamDabatic

alphaEqnSubCycle.H

interFoam.C

correctPhi.H

UEqn.H

pEqn.H

alphaEqn.H

setDeltaT.H

CreateFields.H

Make/

alphaCourantNo.H

Teqn.H

LIB = $(FOAM_USER_LIBBIN)/libmyincompressibleTransportModels

nuModel1_->viscosityProperties().lookup("cp") >> rho2_;
//------------------------Modified---------------------//
nuModel1_->viscosityProperties().lookup("cp") >> cp1_;

nuModel2_->viscosityProperties().lookup("cp") >> cp2_;
nuModel1_->viscosityProperties().lookup("Pr") >> Pr1_;
nuModel2_->viscosityProperties().lookup("Pr") >> Pr2_;

//--------------------------End-----------------------//

9

Copy the solver to user directory

In order to add specific heat capacity Cp and Prandlt number Pr for each phase, the first file which

should be modified is createFields.H, Then the Cp value should be added to alphaEqnSubCycle.H and
alphaEqn.H. Finally, a Temperature equation is created and added to the main code interFoam.C.

We also need to the mixture specific heat capacity as well as the heat flux which are

defined as equation (6) and (7) respectively.

 (6)

 (7)

Here we do the instruction step by step:

First of all, we create temperature field ‘T’ in createFields.H by adding the following lines after

creation of volume fraction alpha1:

Open createFields.H and create the thermal properties we specified in the models before by adding

following lines after line 68 and line 148 respectively:

 const dimensionedScalar& rho2 = twoPhaseProperties.rho2(); // line 68

//------------------Modified---------------------//

const dimensionedScalar& cp1 = twoPhaseProperties.cp1();
const dimensionedScalar& cp2 = twoPhaseProperties.cp2();

//---------------------End----------------------//

 //------------------Modified---------------------//

 Info<< "Reading field T\n" << endl;

 volScalarField T

 (

 IOobject

 (

 "T",

 runTime.timeName(),

 mesh,

 IOobject::MUST_READ,

 IOobject::AUTO_WRITE

),

 mesh

);

//---------------------End----------------------//

 cp -r $FOAM_APP/solvers/multiphase/interFoam/ $WM_PROJECT_USER_DIR \
/applications/solvers/multiphase/myinterFoamDiabatic/

10

 Open file alphaEqnSubCycle.H and add the following line after line 37:

Open file alphaEqn.H and add the following line after line 31:

Create file TEqn.H and add the following line:

 // ……. line 148

//------------------Modified---------------------//
Info<< "Reading / calculating rho*cp\n" << endl;
volScalarField rhoCp
(
IOobject
(
"rho*Cp",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
alpha1*rho1*cp1 + (scalar(1) – alpha1)*rho2*cp2,
alpha1.boundaryField().types()
);
rhoCp.oldTime();

Info<< "Reading / calculating rho*phi*cp\n" << endl;
surfaceScalarField rhoPhiCpf
(
IOobject
(
"rho*phi*cpf",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
rhoPhi*cp1
);

//---------------------End-----------------------//

 rhoPhi= phiAlpha*(rho1 - rho2) + phi*rho2;
//-------------------Modified--------------------//

rhoPhiCpf = phiAlpha*(rho1*cp1 - rho2*cp2) + phi*rho2*cp2;
//----------------------End-----------------------//

 rho == alpha1*rho1 + (scalar(1) – alpha1)*rho2;

//-------------------Modified--------------------//
rhoCp == alpha1*rho1*cp1 + (scalar(1) – alpha1)*rho2*cp2;

//----------------------End-----------------------//

11

add Temperature equation to interfoam.C.

open interFoam.C and add the following lines after line 85:

After doing all above, it is time to rename the old interfoam.C to myinterFoamDiabatic.C and

modifying Make/files as

Since the library of transportModels were modified and compiled to a new directory

($WM_PROJECT_USER_DIR) instead of the original one. We need to tell the compiler to connect to

the new library.

Open Make/options and add the following lines:

Compile the file by command >>wmake .

EXE_INC = \
 -I$(LIB_SRC)/transportModels \

 -I$(WM_PROJECT_USER_DIR)/src/transportModels/incompressible/lnInclude \
 …….

EXE_LIBS = \
 -L$(FOAM_USER_LIBBIN) \

 -lmyincompressibleTransportModels \

 …….

 surfaceScalarField kappaf = twoPhaseProperties.kappaf();

fvScalarMatrix TEqn
(
fvm::ddt(rhoCp, T)
+ fvm::div(rhoPhiCpf, T)

- fvm::laplacian(kappaf, T)
);

TEqn.solve();

 #include "UEqn.H"
//-------------------Modified--------------------//

#include "TEqn.H"
//----------------------End--------------------//

 myinterFoamDiabatic.C

EXE = $(FOAM_USER_APPBIN)/myinterFoamDiabatic

12

3.3 Setup the case in OpenFOAM

 3.3.1 Mesh Generation
The mesh was generated by two different ways in this study, namely: directly by blockMesh and

indirectly by ANSYS FLUENT. In the second way, the mesh generated in ANSYS FLUENT need to

be converted to OpenFOAM by utilities fluent3DMeshToFoam. However, in this tutorial only the

first method has been presented.

Figure 5 Mesh in ANSYS FLUENT (left) and OpenFoam(right)

The parameters of the case have been given as follows:

Table 1 The parameters of the case

Length

mm

Diameter

mm

Wall heat

flux

w/m2

Working fluid

Inlet

temperature

K

Pressure:

bar

15.5 1.7 1500 R134a 293 7

 The mesh generation using an O-grid according to the ERCOFTAC conical diffuser test case
5
. One

main advantage of the O-grid method is that the mesh is refined in the near-wall places. The refining

process has 2 steps. First , the cross-section of the channel was separated to two parts, namely: square-

like inner and outer. As it is shown in Figure 6, the refines parameter ‘rRelA’ is defined as the ratio of

the diagonal of the square-like inner to the diameter of the cross –section circle while ‘rRelAc’

denotes the ratio of the distance between mid-point of the arcs and the circle center to ‘rRelA’.

 ‘rRelAc=1’ , the arc become a part of the circle with diameter ‘rRelA’.

‘rRelAc=

’, the 4 arcs become 4 straight lines and form an inner square with diagonal ‘rRelA’.

Usually a value of ‘rRelAc’ between 1 and

 is chosen in order to reduce the distortion of the mesh as

much as possible. In this project, a value of 0.8 is set.

Then, the mesh near the wall can be refined by set relative large ‘tNumberOfCells’. In order to do

this, we need to create the file ‘blockMesh.m4’ under the directory constant/polyMesh/ and set the

parameters according to Table 1. The detail code can be found in the code package. After that, we go

the directory constant/polyMesh/ and type command >> m4 -P blockMeshDict.m4 > blockMesh .(the

13

case including the m4 file can be download from homepage:
http://www.tfd.chalmers.se/~hani/kurser/OS_CFD/).

Figure 6 O grid method (H.Nilsson 2008)

 a) b)

Figure 7 The mesh a) cross-section; b) side

3.3.2 Setup the case
As we can see from Figure 8, the case directory contains 3 sub-directory: constant / ,system/ and initial

conditions 0/. New input parameters such Cp, Pr number, thermal conductivities as well as numerical

schemes should be added to the case files in order to setup the case properly. This section we will do

this step by step.

http://www.tfd.chalmers.se/~hani/kurser/OS_CFD/

14

Figure 8 the tree structure of case directory

First of all, download the case file from the course homepage:
http://www.tfd.chalmers.se/~hani/kurser/OS_CFD/

The modification which had been done by the author can be summarized as follows:

The Cp and Prandlt number have added in the constant/transportProperties file as following lines:

Tell the code to use myinterFoamDiabatic solver and the new libraries by opening system/controlDict

and add the following lines:

A new finite divergence schemes for Temperature was added in system/ fvSchemes as follows:

myinterFoamDiabaticCase

constant

system

0

constant

polyMesh

transportProperties

turbulenceProperties

system

controlDict

fvSchemes

fvSolutions

decomposeParDict

0

alpha1

p_rgh

T

U

application myinterFoamDiabatic;

…

libs("libmyincompressibleTransportModels.so");

phase1

{

 ….

 Pr Pr [0 0 0 0 0 0 0] 3.366;

 cp cp [0 2 -2 -1 0 0 0] 1433.4;

}

phase2

{

 ….

 Pr Pr [0 0 0 0 0 0 0] 0.87;

 cp cp [0 2 -2 -1 0 0 0] 1045.2;

}

http://www.tfd.chalmers.se/~hani/kurser/OS_CFD/

15

Anew finite volume solution method for Temperature was added in system/ fvSolution as follows:

A Temperature field file was created under 0/ directory in 0/T as following lines:

T
 {

 solver BICCG;

 preconditioner DILU;

 tolerance 1e-7;

 relTol 0;

 }

divSchemes

{

 div(rho*phi,U) Gauss limitedLinearV 1;
 ….
 div(rho*phi*cpf, T) Gauss upwind;
 …..
}

16

As there is no constant heat flux boundary in OpenFOAM so far, we need to set this boundary

condition indirectly. According to Fouriers’ law, heat flux can be expressed as the following equation:

So here we set a Temperature gradient which available in OpenFOAM instead of heat flux.

wall
 {
 type fixedGradient;
 value uniform 183.765;

 }

 outlet
 {
 type zeroGradient;
 }

 dimensions [0 0 0 1 0 0 0];

internalField uniform 300;

boundaryField

{

 inlet

 {

 type fixedValue;

 value uniform 300;

 }

 wall

 {

 type fixedValue;

 value uniform 300;

 }

 outlet

 {

 type zeroGradien;

 }

}

17

3.3.3 SetField

Now we need to initialized a gas bubble in the inlet of the channel by the help of the utility called

funkySetFields which is part of swak4foam. This utility can set the value of a scalar or a vector field

depending on an expression that can be entered via the command line or a dictionary. It can also be

used to set the value of fields on selected patches. It's like the setFields utility
6
.

It can be used to set non-uniform initial-conditions without programming.

Since it is very difficult to initialize the bubble shape accurately, here a simplified cylinder bubble is

set as the initial condition. The diameter of the bubble is set slightly smaller than the channel(1.7mm)

to 1.5mm and the length is set to 0.35mm.

The expression of this initial bubble cylinder in Cartesian coordinate is as follows :

 && 0< z <0.003 (7)

Since only the funkySetFields utility is needed in this project, we do not compile the whole package.

Instead, we do:

Then, we go to directory constant/polyMesh and set the initial bubble by funkySetFields utility

according to the following command

funkySetFields -field alpha1 -expression 1 -time 0 -keepPatches -condition "pow(pos().x,2)
+ pow(pos().y,2) < pow(0.00075,2) && pos().z <0.003"

cd $WM_PROJECT_USER_DIR/src/swak4Foam/Utilities/funkySetFields

wmake

cd $WM_PROJECT_USER_DIR/src

svn checkout https://openfoam-extend.svn.sourceforge.net/svnroot/openfoam-
extend/trunk/Breeder_1.7/libraries/swak4Foam

http://openfoamwiki.net/index.php?title=SetFields&action=edit&redlink=1
https://openfoam-extend.svn.sourceforge.net/svnroot/openfoam-extend/trunk/Breeder_1.7/libraries/swak4Foam/
https://openfoam-extend.svn.sourceforge.net/svnroot/openfoam-extend/trunk/Breeder_1.7/libraries/swak4Foam/

18

Figure 9 The initialized bubble

Decompose the case

Because of the big size of the mesh, it is better to run the case in parallel. In order to do this, we have

to decompose the mesh to 4 parts by using the decomposeParDict. Open the file

system/decomposeParDict and edit the contents as follows:

 After we run the decompose by type command >>decompsePar, we can get the 4 parts of the mesh as

Figure 10.

Figure 10 One of the 4 parts of channel

numberOfSubdomains 4;

method simple;

simpleCoeffs

{

n (2 2 1);

delta 0.001;

}

19

3.3.4 Ramped inlet conditions
Because these bubbles are generated periodically, we need to set a ramped phase inlet boundary

condition. We want the gas volume fraction of inlet to ramp from the value α1= 1 to the value α2=

0 in the time interval between t1 = 0 and t2 = 0.04s. The ramp is simply defined by the extremal file:

the interpolation routine will automatically provide the correct values for the times contained inside

the interval specified above. So, we need to create a text file with the following format:

First , we should create a ‘Ramp’ file(myinterFoamCase/ramp) which including the values of start

time, ending time and gas volume fraction of the inlet under the case directory as following:

Then we set the ramped boundary condition by choosing timeVaryingUniformFixedValue in the initial

file(0/alpha1)

 (

 (0.0 1)

 (0.009999 1)

 (0.01 0)

 (0.019999 0)

 (0.02 1)

 (0.029999 1)

 (0.03 0)

 (0.039999 0)

 (0.04 1)
)

 (

 (t_0 value_0)

 ...

 (t_n value_n)

)

20

3.3.5 Running case

In the end, we set the simulation time, time step and interval and run our case in parallel according to

the following parameters(System/controDict).

We just need to type the following command to run the case in parallel:

application myinterFoamDiabatic;

startFrom latestTime;

startTime 0;

stopAt endTime;

endTime 0.02;

deltaT 2e-4;

writeControl adjustableRunTime;

writeInterval 0.001;

purgeWrite 0;

writeFormat ascii;

writePrecision 6;

writeCompression uncompressed;

timeFormat general;

timePrecision 6;

runTimeModifiable yes;

adjustTimeStep on;

maxCo 0.5;

maxAlphaCo 0.5;

maxDeltaT 1;

libs (“libmyincompressibleTransportModels.so”);

 boundaryField

…
 inlet

 {
 type timeVaryingUniformFixedValue;
 fileName "ramp";
 outOfBounds clamp;
 }
}

21

 0 s 0.0005s

Figure 11 Alpha1 gas bubble in the channel

 0.015 s 0.02 s

Figure 12 gas bubble in the channel(at 0s, 0.005s, 0.015s, 0.02s)

Figure 13 Temperature of the wall at 0s (left),0.02s(right)

From Figure11 and 12 the bubble going through the channel periodically according to the ramped

boundary conditions. The temperature field in Figure 13 indicate that the heat was simulated

mpirun -np 4 myinterFoamDiabatic -parallel | tee log

22

successfully in the case. A further study by adding source terms to mass and energy equation should

be implement in order to investigate the phase change phenomena.

23

Reference

1 OpenFoam User Guide
2
 Kunkelmann C, Stephan P. Modification and Extension of a Standard Volume-Of-Fluid Solver for

Simulating Boiling Heat Transfer, European Conference on Computational Fluid Dynamics, Lisbon,

Portugal, 14–17 June 2010
3
 Hirt, C.W.; Nichols, B.D. (1981), "Volume of fluid (VOF) method for the dynamics of free

boundaries", Journal of Computational Physics39 (1): 201–225
4
 Pilliod, J.E. (1992), "An analysis of Piecewise Linear Interface Reconstruction Algorithms for

Volume of Fluid Methods. Technical Report.", Technical Report, U.C. Davis
5
 Håkan Nilsson, Maryse Page, Martin Beaudoin, Bernhard Gschaider, Hrvoje Jasak

The OpenFOAM Turbomachinery Working Group, and Conclusions from the Turbomachinery

Session of theThird OpenFOAM Workshop
6
 http://openfoamwiki.net

http://openfoamwiki.net/

