

CFD with OpenSource software

A course at Chalmers University of Technolgy

Taught by Håkan Nilsson

Project work:

Projection of a mesh on a .stl surface

Developed for OpenFOAM-1.6.ext

Author: Peer reviewed by:

Christoffer Järpner Martin de Maré

 Qingming Liu

 Ehsan Yasari

Disclaimer: this is a student project work, done as a part of a course where

OpenFOAM and some other OpenSource software are introduced to the

students. Any reader should be aware that it might not be free of errors. Still

it might be useful for someone who would like to learn some details similar to

the ones presented in the report and in the accompanying files.

October 16, 2011

Contents
1 Introduction ... 1

2 Theoretical background: the Basics of snappyHexMesh .. 2

2.1 snappyHexMeshDict ... 2

2.2 autoRefineDriver .. 4

2.3 autoSnapDriver ... 5

2.3.1 nSmoothPatch .. 6

2.3.2 Tolerance.. 8

2.3.3 nSolveIter ... 9

2.3.4 nRelaxIter ... 11

3 Theoretical background: the Basics of moveDynamicMesh ... 13

3.1 The different classes used in moveDynamicMesh ... 14

3.2 The different solvers used in moveDynamicMesh ... 15

3.3 The diffusivity used in moveDynamicMesh .. 15

3.4 dynamicMeshDict ... 15

4 Tutorial of how to implement mysnappyHexMesh .. 16

4.1 Creation of mysnappyHexMesh ... 16

4.2 Create header files of the other utilities .. 17

4.3 Changes to mysnappyHexMesh.C .. 19

4.4 Creation of createWeights.H .. 23

4.5 Changes to refineMesh.H ... 24

4.6 Changes to moveDynamicMesh.H.. 25

4.7 Changes to refineBoundaryWallLayer.H .. 26

5 Explanation of the changes to mysnappyHexMesh .. 28

5.1 mysnappyHexMesh.C ... 28

5.1.1 refineMesh.H ... 29

5.1.2 moveDynamicMesh.H ... 30

5.1.3 calculateWeights.H .. 30

5.1.4 refineBoundaryWallLayer.H .. 31

6 Creation of snappyTestCase .. 32

6.1 Changes to snappyHexMeshDict .. 33

6.2 Changes to dynamicMeshDict .. 35

6.3 Changes to blockMeshDict ... 36

6.4 Changes of pointDisplacement ... 36

6.5 Creation of the "velocity" file ... 38

6.6 Changes to the controlDict ... 38

7 Explanation of the test case for mysnappyHexMesh .. 40

7.1 .stl surface ... 40

7.2 blockMeshDict .. 40

7.3 snappyHexMeshDict ... 41

7.4 dynamicMeshDict ... 43

7.5 pointMotionU ... 43

7.6 Velocity boundary file ... 45

7.7 Running the case .. 46

8 Best Practices .. 49

9 Further work for future improvements .. 50

References .. 51

Appendix ... 52

Appendix 1 - refineMesh.H ... 52

Appendix 2 – moveDynamicMesh.H .. 56

Appendix 3 – refineBoundaryWallLayer.H ... 57

1

1 Introduction
SnappyHexMesh is a utility in the opensource software OpenFOAM, the utility or tool works

in such a way that provided a mesh, and a surface. SnappyHexMesh will cut through the

mesh where the mesh and the surface intersect and then redo the mesh so that the mesh is

following the surface. As a tool it is very quick and effective, probably one of the faster ways

to generate a complex mesh provided by any tool or software. However since

snappyHexMesh cuts through the surface and generates its own mesh, the mesh isn’t always

very nice, especially in the boundary layer regions, where for correct solutions a mesh needs

to be very fine. This is especially true for a very complex geometry like the geometrical

topology of the real world ground. See the master thesis [1] for an analysis of how

snappyHexMesh compares to commercial mesh generation software. As shown in the report

the main problem of snappyHexMesh is the boundary layer generation, and the fact that it

might work well on simple surfaces, but on more complex surfaces the boundary layer might

not even be created in certain points or similarly bad properties.

How is a fine mesh generated for a complex topology? snappyHexMesh has an amazing

potential in its way to snap the mesh points to a surface. This tutorial is going to describe

how to modify snappyHexMesh to snap an already generated mesh to a surface, without

cutting in the mesh.

First of all important, already existing codes will be explained, with a more in-depth

explanation of the parts that’s important for the modifications done in the later part.

2

2 Theoretical background: the Basics of

snappyHexMesh
Since snappyHexMesh is the base of mysnappyHexMesh, this chapter will go through the

basics of how snappyHexMesh works.

As previously mentioned snappyHexMesh is a utility in OpenFOAM, the code can be found in

$WM_PROJECT_DIR/applications/utilities/mesh/generation/snappyHexMesh.

snappyHexMesh uses several different libraries, but there are three main libraries or

“programs” called:

 autoRefineDriver

 autoSnapDriver

 autoLayerDriver

These three “programs” can be found in the folder

$WM_PROJECT_DIR/src/autoMesh/autoHexMesh/autoHexMeshDriver/ and are responsible

for the cutting and refining of the mesh (autoRefineDriver), the snapping of the mesh on to

the surface (autoSnapDriver) and the creation of boundary layers (autoLayerDriver).

For the purpose of creating a projection of a surface on to the grid, the most important part

of snappyHexMesh is the autoSnapDriver which will be discussed further in chapter 2.3. To

understand what snappyHexMesh does, some basic understanding of how autoRefineDriver

operates is also good; therefore autoRefineDriver will be discussed to some extent in chapter

2.2. Finally the “user interface” of the snappyHexMesh utility, its dictionary where the user

can control what shall happen will briefly be mentioned in chapter 2.1.

2.1 snappyHexMeshDict
A part of snappyHexMeshDict can be seen below; the important part of this code is the three

lines at the bottom, castellatedMesh, snap and addLayers. These lines activates the three

utilities, if castellatedMesh is set as true it activates the autoRefineDriver, and if snap is set

to true it activates the autoSnapDriver, and if addLayers is set to true it activates the

autoLayerDriver.

FoamFile

{

 version 2.0;

 format ascii;

 class dictionary;

 object snappyHexMeshDict;

}

castellatedMesh true;

snap false;

addLayers false;

3

snappyHexMeshDict has a lot of so called sub-dictionaries, the sub-dictionaries can be seen

below.

geometry

{

}

castellatedMeshControls

{

}

snapControls

{

}

addLayersControls

{

}

meshQualityControls

{

}

In each of these sub-dictionaries the different utilities of snappyHexMesh can be controlled,

the sub-dictionaries geometry and meshQualityControls are general settings that will affect

the outcome of all the utilities in snappyHexMesh. In the geometry sub-dictionary the user

needs to specify which surface that snappyHexMesh should cut, and snap to, this usually

looks something like the code below:

geometry

{

 AcrossRiver.stl

 {

 type triSurfaceMesh;

 name AcrossRiver;

 }

 refinementBox

 {

 type searchableBox;

 min (659531 4.7513e+06 1028);

 max (662381 4.75454e+06 1200);

 }

};

Where AcrossRiver.stl is the surface file that’s going to be used, and triSurfaceMesh defines

what kind of surface it is, in this case a surface geometry that’s built of a multitude of

triangular surfaces, which together creates an advanced geometry.

In the meshQualityControls the user have a multitude of options that’s going to effect the

end-result of how the final mesh is going to look, for example there is a option called

maxNonOrtho which describes how much a hexagon cell are allowed to be non-orthogonal,

i.e. how skewed it is allowed to become. So if the mesh quality of the generated mesh is not

satisfactory, the meshQualityControls is a good place to start messing around with.

4

The other sub-dictionaries are there to control the outcome of a specific utility, for example

the options in snapControls determines how the snapping of the mesh to the surface is going

to be handled, these options will be explained further in the chapters 2.3.1 – 2.3.4.

2.2 autoRefineDriver
AutoRefineDriver is called in the snappyHexMeshDict dictionary, located in the system folder

of the case, by selecting the option “castellatedMesh” as true (snappyHexMeshDict is

described in the previous chapter, 2.1). The program will go through the mesh cells and see

if the mesh intersects with the surface specified. Every time it does, it will split the cell and

put it in a specific boundary. The boundary will be named specifically after the surface that

the user specified in their snappyHexMeshDict. For example if the user wishes to snap to the

surface “AcrossRiver.stl” the file needs to be placed in the folder

$case_folder/constant/trisurface and then called on in snappyHexMeshDict according to

what was mentioned in chapter 2.1. With this done the boundary will be called

AcrossRiver_patch0, where AcrossRiver comes from the surface file name, and patch0 comes

from the first line in the surface file, seen in the code below.

solid patch0

 facet normal -0.0331497 -0.099449 0.99449

 outer loop

This is important because when projecting something the autoRefineDriver won’t be used

but the autoSnapDriver must still recognize which boundary that should be projected.

autoRefineDriver will then continue to refine the boundary just created to a certain point

specified in the snappyHexMeshDict. When autoRefineDriver is done, a mesh similar to

figure 1 is usually the result.

Figure 1, these figures above show how autoRefineDriver works on a mesh.

5

2.3 autoSnapDriver
Similarly to autoRefineDriver, autoSnapDriver is called by selecting the “snap” option as true

in snappyHexMeshDict. AutoSnapDriver, as the name implies, snaps the mesh boundary cut

by autoRefineDriver to the surface. AutoSnapDriver is very complicated, but very simplified

it starts off by:

1. Calculating the mesh-points location, and the cell-centers of the surface.

2. After that the driver goes through every mesh-point that’s going to be moved and

checks the distance to the closest surface cell-center.

3. The mesh will then be moved that distance so the mesh and the surface connects.

4. The program will then check so that no couple of mesh-points connects to the

same surface cell.

In point 2 the word closest is underlined, this is because it’s a very important thing to keep in

mind with snappyHexMesh. It tries to snap to the closest surface point, and as such there is a

rather big risk that one point will have several cells connected to it. This is why point 4 is so

important, it moves the cells which share surface point, and spreads it out. When

autoSnapDriver is done, a mesh similar to figure 2 is usually the result.

Figure 2, these figures above show how autoSnapDriver works on a mesh.

In snappyHexMeshDict there are several options in controlling how this driver is going to

work, how many iterations it’s going to do (to get the best possible mesh) and so on, the

options can be found in “snapControls” and are;

1. nSmoothPatch ,

2. tolerance,

6

3. nSolveIter,

4. nRelaxIter.

What do these options do?

Digging through the code of snappyHexMesh.C and autoSnapDriver.C all of these data’s can

be found and by changing the values, the way snappyHexMesh operates can be changed.

2.3.1 nSmoothPatch

nSmoothPatch can be found in the autoSnapDriver.C. Below the code where nSmoothPatch
is used can be seen. The code shows that nSmoothPatch is the upper limit for the for-loop,
i.e. the higher the value the more times this loops is going to be run.

 for(label smoothIter = 0; smoothIter <

snapParams.nSmoothPatch(); smoothIter++)
 {

 Info<< "Smoothing iteration " << smoothIter << endl;

 checkFaces.setSize(mesh.nFaces());

 forAll(checkFaces, faceI)

 {

 checkFaces[faceI] = faceI;

 }

 pointField patchDisp(smoothPatchDisplacement(meshMover,

baffles));

 // The current mesh is the starting mesh to smooth from.

 meshMover.setDisplacement(patchDisp);

 meshMover.correct();

 scalar oldErrorReduction = -1;

 for (label snapIter = 0; snapIter < 2*snapParams.nSnap();

snapIter++)

 {

 Info<< nl << "Scaling iteration " << snapIter << endl;

 if (snapIter == snapParams.nSnap())

 {

 Info<< "Displacement scaling for error reduction set to

0."

 << endl;

 oldErrorReduction = meshMover.setErrorReduction(0.0);

 }

 // Try to adapt mesh to obtain displacement by smoothly

 // decreasing displacement at error locations.

 if (meshMover.scaleMesh(checkFaces, baffles, true,

nInitErrors))

 {

 Info<< "Successfully moved mesh" << endl;

 break;

 }

 }

 if (oldErrorReduction >= 0)

7

 {

 meshMover.setErrorReduction(oldErrorReduction);

 }

 Info<< endl;

 }

In the loop, the program is trying to smooth the external mesh i.e. the higher the value the
nSmoothPatch, the smoother the projected surface will become, this can, if one looks
closely, be seen in figure 3 and 4, where figure 3 shows how a mesh could look if
nsmoothPatch is 1, and figure 4 shows how it could look with nSmoothPatch=6.

Figure 3, nSmootPatch=1, to the left a coarse mesh can be seen whereas the right figure
shows a much finer mesh.

Figure 4, nSmootPatch=6, to the left a coarse mesh can be seen whereas the right figure
shows a much finer mesh.

Looking at the figures one can see that figure 3 has a bit sharper edges when it comes to the

projected surface.

8

2.3.2 Tolerance
In the location
/opt/openfoam170/src/autoMesh/autoHexMesh/autoHexMeshDriver/snapParameters/
a file called snapParameters.C can be found, this piece of code is there to read the
snapControls subdictionary that is specified in snappyHexMeshDict. The snapParameters file
reads the dictionary and saves the four options, the option tolerance, is in snapParameters
saved as snapTol. snapTol can be found in the autoSnapDriver.C. Below you can see the code
where snapTol is used. And as can be seen snapTol is used at the end of the code, multiplied
by the longest edge of a cell.

Foam::scalarField Foam::myautoSnapDriver::calcSnapDistance

(

 const snapParameters& snapParams,

 const indirectPrimitivePatch& pp

) const

{

 const edgeList& edges = pp.edges();

 const labelListList& pointEdges = pp.pointEdges();

 const pointField& localPoints = pp.localPoints();

 const fvMesh& mesh = meshRefiner_.mesh();

 scalarField maxEdgeLen(localPoints.size(), -GREAT);

 forAll(pointEdges, pointI)

 {

 const labelList& pEdges = pointEdges[pointI];

 forAll(pEdges, pEdgeI)

 {

 const edge& e = edges[pEdges[pEdgeI]];

 scalar len = e.mag(localPoints);

 maxEdgeLen[pointI] = max(maxEdgeLen[pointI], len);

 }

 }

 syncTools::syncPointList

 (

 mesh,

 pp.meshPoints(),

 maxEdgeLen,

 maxEqOp<scalar>(), // combine op

 -GREAT, // null value

 false // no separation

);

 return snapParams.snapTol()*maxEdgeLen;
}

This option changes how long distance the program should look for a point to snap, the
distance will be the number put in “tolerance”*”length of the longest edge in the cell”. This
option will be very important in mysnappyHexMesh, it determines how fine the initial mesh
can be. In figure 5 and 6 a mesh can be seen where in figure 5 the value of tolerance is set
to 1, and figure 6 shows how it could look with tolerance=10.

9

Figure 5, tolerance=1, to the left a coarse mesh can be seen whereas the right figure shows a
much finer mesh.

Figure 6, tolerance=10, to the left a coarse mesh can be seen whereas the right figure shows
a much finer mesh.

Looking at the figures one can see at the coarse mesh, when the tolerance is set to 10,

follows the surface better than when the tolerance is set to 1.

2.3.3 nSolveIter
In the location
/opt/openfoam170/src/autoMesh/autoHexMesh/autoHexMeshDriver/snapParameters/
a file called snapParameters.C can be found, this piece of code is there to read the
snapControls subdictionary that is specified in snappyHexMeshDict. The snapParameters file
reads the dictionary and saves the four options, the option nSolveIter, is in snapParameters
saved as nSmoothDispl. nSmoothDispl can be found in the autoSnapDriver.C. Below you can
see the code where nSmoothDispl is used. As can be seen nSmoothDispl is used as the upper
limit for a for-loop.

from autoSnapDriver
for (label iter = 0; iter < snapParams.nSmoothDispl(); iter++)
 {

 if ((iter % 10) == 0)

 {

 Info<< "Iteration " << iter << endl;

 }

10

 pointVectorField oldDisp(disp);

 meshMover.smooth(oldDisp, edgeGamma, false, disp);

 }

This option changes how many times the “snapping” part of snappyHexMesh should be
run, i.e. the higher this number is the better mesh quality will be gained, i.e. the more
equidistant mesh will be created when it comes to the boundary, but also the longer the
snapping will take. For mysnappyHexMesh this value will mostly be important when the
surface have a big difference in height. In figure 7 and 8 a mesh can be seen where in figure
7 the value of nSolveIter is set to 1, and figure 8 shows how it could look with
nSolverIter=100.

Figure 7, nSolveIter=1, to the left a coarse mesh can be seen whereas the right figure shows a
much finer mesh.

Figure 8, nSolveIter=100, to the left a coarse mesh can be seen whereas the right figure
shows a much finer mesh.

As can be seen there is no difference between the two figures, this is because the surface is

rather flat and the option would have no influence.

11

2.3.4 nRelaxIter
In the location
/opt/openfoam170/src/autoMesh/autoHexMesh/autoHexMeshDriver/snapParameters/
a file called snapParameters.C can be found, this piece of code is there to read the
snapControls subdictionary that is specified in snappyHexMeshDict. The snapParameters file
reads the dictionary and saves the four options, the option nRelaxIter, is in snapParameters
saved as nSnap. nSnap can be found in the autoSnapDriver.C Below you can see the code
where nSnap is used. As can be seen nSnap is used as the upper limit for a for-loop.

from autoSnapDriver
Info<< "Moving mesh ..." << endl;

 for (label iter = 0; iter < 2*snapParams.nSnap(); iter++)
 {

 Info<< nl << "Iteration " << iter << endl;

 if (iter == snapParams.nSnap())

 {

 Info<< "Displacement scaling for error reduction set to 0."

<< endl;

 oldErrorReduction = meshMover.setErrorReduction(0.0);

 }

 if (meshMover.scaleMesh(checkFaces, baffles, true,

nInitErrors))

 {

 Info<< "Successfully moved mesh" << endl;

 break;

 }

 if (debug)

 {

 const_cast<Time&>(mesh.time())++;

 Pout<< "Writing scaled mesh to time " <<

meshRefiner_.timeName()

 << endl;

 mesh.write();

 Pout<< "Writing displacement field ..." << endl;

 meshMover.displacement().write();

 tmp<pointScalarField>

magDisp(mag(meshMover.displacement()));

 magDisp().write();

 }

 }

This option changes how many times the mesh will run a relaxing script that removes some
bad mesh points; however snappyHexMesh should stop before, when the correct mesh is
created. In figure 9 and 10 a mesh can be seen where in figure 9 the value where nRelaxIter
is set to 1, and figure 10 shows how it could look with nRelaxIter =10.

12

Figure 9, nRelaxIter=1, to the left a coarse mesh can be seen whereas the right figure shows a
much finer mesh.

Figure 10, nRelaxIter=10, to the left a coarse mesh can be seen whereas the right figure
shows a much finer mesh.

It might be possible to see in the figures that the option has little to no impact on the coarser

mesh, whereas a small difference can be seen between the two finer meshes.

13

3 Theoretical background: the Basics of

moveDynamicMesh
moveDynamicMesh is used in mysnappyHexMesh to move the internal boundary field,

because it is used, a brief description of what moveDynamicMesh is and how it can be used

follows in this chapter.

moveDynamicMesh is a mesh manipulation utility, just as snappyHexMesh and the code is

located in the following directory:

$WM_PROJECT_DIR/applications/utilities/mesh/manipulation/moveDynamicMesh.

moveDynamicMesh is a very big and wide spread utility that has several functionalities. For

example it is used in all sorts of simulations where the mesh or the boundary is moving, and

can also be used to manipulate a static mesh, because of the big range of how

moveDynamicMesh is used. This project will only briefly mention the capability which this

utility has, but puts a higher focus on the dynamicMotionSolverFvMesh and the library

libfvMotionSolvers.so that goes with it, which later on is used to modify the internal mesh of

the projection.

moveDynamicMesh can be split up in to two different mesh manipulation categories the

automatic mesh motions (dynamicFvMesh) and the topological mesh changes

(topoChangerFvMesh) which will be explained further in chapter 3.1.

Each of these utilities can be solved in different manners. There are three solvers for this
which is called displacementLaplacian, velocityLaplacian and SBRStress more on these can be
found in chapter 3.2.

When using moveDyanamicMesh one also has to specify the diffusivity of the mesh, e.g. how
easy or hard it is to move the internal mesh points, the different options available is
described in chapter 3.3.

For more information about dynamicMeshDict and the different options [2] is a very good
source.

14

3.1 The different classes used in moveDynamicMesh
In general one could say that for time varying, and big mesh changes, such as a moving
object through the mesh or a rotating mesh of the kind that’s used in for example
turbomachinery, the libDynamicTopoChanger should be used. This library links to classes
such as linearValveFvMesh, linearValveLayersFvMesh, mixerFvMesh and
movingConeTopoFvMesh. The functionality of these classes can be described as:

1. linearValveFvMesh, which can be found in the folder
$WM_PROJECT_DIR/src/topoChangerFvMesh/linearValveFvMesh/
should for example be used if an object is moving linearly compared to
another piece of mesh. The program works in such a way that 2 or more
boundaries are defined, and as the time changed the boundaries are
decoupled and can move freely. As the calculations starts again, the mesh is
reattached to the new position the object has.

2. linearValveLayersFvMesh, which can be found in the folder
$WM_PROJECT_DIR/src/topoChangerFvMesh/linearValveLayersFvMesh

/ is extremely similar to the above, however layer addition and removal is
also included. This is very good for cases where you have a big deformation
of the mesh, such as a piston in a diesel engine.

3. mixerFvMesh, which can be found in the folder
$WM_PROJECT_DIR/src/topoChangerFvMesh/mixerFvMesh/ is used for
rotation of meshes and is specifically used in turbo machinery calculations.
Similarly to the other mesh methods, when time is changing the mesh
boundaries will be decoupled and then reattached when calculations are
started.

For smaller mesh displacements, DynamicFvMesh should be used. This contains
mainly three classes, which are staticFvMesh, dynamicMotionSolverFvMesh and
dynamicInkJetFvMesh.

1. staticFvMesh, which can be found in the folder
/opt/openfoam170/src/dynamicFvMesh/staticFvMesh is pretty much as
it sounds, static, using this in the dictionary when running
moveDynamicMesh, and nothing will happen.

2. dynamicMotionSolverFvMesh, which can be found in the folder
/opt/openfoam170/src/dynamicFvMesh/dynamicMotionSolverFvMesh/
is the main class for this library. For small changes or movements in the
boundary layer, this will move the internal mesh points according to how
the user specifies it should behave.

3. dynamicInkJetFvMesh, which can be found in the folder
/opt/openfoam170/src/dynamicFvMesh /dynamicInkJetFvMesh
modifies the mesh based on harmonic motions around a user-defined
reference plane.

When using mysnappyHexMesh dynamicMotionSolverFvMesh should be used.

15

3.2 The different solvers used in moveDynamicMesh
As said before there are three solvers in moveDynamicMesh the solvers solve the mesh

motion as if the mesh would have been a solid, using FEM and the solvers are called

displacementLaplacian, velocityLaplacian and SBRStress.

1. displacementLaplacian solves the mesh motion as a displacement in mesh points,
which for each timestep is moved to different points, and a prescribed boundary
displacement is needed. The code for this solver can be found in the location
/opt/openfoam170/src/fvMotionSolver/fvMotionSolvers/displacement/lapl

acian/

2. velocityLaplacian solves the mesh motion as a velocity in the mesh points, and
therefore a prescribed velocity is needed on the boundary. The code for this solver
can be found in the
location/opt/openfoam170/src/fvMotionSolver/fvMotionSolvers/velocity/la
placian/

3. SBRStress works like displacementLaplacian, but also solves for rotation. The code for

this solver can be found in the location
/opt/openfoam170/src/fvMotionSolver/fvMotionSolvers/displacement/SBRS

tress

3.3 The diffusivity used in moveDynamicMesh
In the dynamicMeshDict which can be found in the constant directory the diffusivity is also
described, the diffusivity can be explained similarly to a springs “k” constant, the smaller
diffusivity the easier it will be to move that point. In the diffusivity there are several different
ways to define how the diffusiveness is changed along the mesh, for example diffusivity
uniform; will have the diffusivity equal along the mesh and the mesh will then be deformed
equally along the entire mesh. This is compared to for example diffusivity InverseDistance
1(maxZ); which will decrease the diffusivity the further away from the boundary specified (in
this case maxZ). The latter option should be used, when using moveDynamicMesh in
mysnappyHexMesh.

3.4 dynamicMeshDict
A typical dynamicMeshDict could look like the code below:

FoamFile

{

 version 2.0;

 format ascii;

 class dictionary;

 object dynamicMeshDict;

}

dynamicFvMesh dynamicMotionSolverFvMesh;

motionSolverLibs ("libfvMotionSolvers.so");

solver velocityLaplacian;

diffusivity quadratic inverseDistance 1 (maxZ);

16

4 Tutorial of how to implement

mysnappyHexMesh
Below a short tutorial of how to change snappyHexMesh.C in to mysnappyHexMesh.C will be

described.

4.1 Creation of mysnappyHexMesh
MysnappyHexMesh is based on four different utilities, these four are

 snappyHexMesh.C

 refineMesh.C

 moveDynamicMesh.C

 refineWallLayer.C

Start by copying all these utilities to OpenFoams user folder by typing these lines:

cp -r $WM_PROJECT_DIR/applications/utilities/mesh/generation/snappyHexMesh/ \

$WM_PROJECT_USER_DIR/.

cp -r $WM_PROJECT_DIR/applications/utilities/mesh/manipulation/refineMesh/ \

$WM_PROJECT_USER_DIR/snappyHexMesh/.

cp -r $WM_PROJECT_DIR/applications/utilities/mesh/manipulation/moveDynamicMesh/ \

$WM_PROJECT_USER_DIR/snappyHexMesh/.

cp -r $WM_PROJECT_DIR/applications/utilities/mesh/advanced/refineWallLayer/ \

$WM_PROJECT_USER_DIR/snappyHexMesh/.

Enter the user folder by typing:

cd $WM_PROJECT_USER_DIR

Rename the snappyHexMesh folder just copied to mysnappyHexMesh and enter it by

writing:

mv snappyHexMesh mysnappyHexMesh

cd mysnappyHexMesh

Rename snappyHexMesh.C to mysnappyHexMesh.C by typing:

mv snappyHexMesh.C mysnappyHexMesh.C

To be able to compile the new program the file Make/files needs to be edited slightly. Do

this by typing:

vi Make/files

The file should look something like this:

snappyHexMesh.C

17

EXE = $(FOAM_APPBIN)/snappyHexMesh

Change it so it looks like this:

mysnappyHexMesh.C

EXE = $(FOAM_USER_APPBIN)/mysnappyHexMesh

Save and exit and assuming everything have been done correctly it should now be possible

to compile the code and run a case for snappyHexMesh, using mysnappyHexMesh instead.

Compile it by typing:

wclean

wmake

4.2 Create header files of the other utilities
Move the other utilities from their copied location to mysnappyHexMesh folder.

mv refineMesh/refineMesh.C refineMesh.H

cp refineMesh.H refineMeshStuff.H

mv refineWallLayer/refineWallLayer.C refineBoundaryWallLayer.H

mv moveDynamicMesh/moveDynamicMesh.C moveDynamicMesh.H

To be able to use these utilities in the code, the compiler needs to know where all the

important files are located; this information is specified in the Make/options file. Therefore

all the lines in the different options files for all utilities needs to be incorporated in to

mysnappyHexMesh's options file.

For snappyHexMesh.C the options file (located in Make/options) look like this:

EXE_INC = \

 -I$(LIB_SRC)/decompositionMethods/decompositionMethods/lnInclude \

 -I$(LIB_SRC)/autoMesh/lnInclude \

 -I$(LIB_SRC)/meshTools/lnInclude \

 -I$(LIB_SRC)/triSurface/lnInclude \

 -I$(LIB_SRC)/dynamicMesh/dynamicMesh/lnInclude \

 -I$(LIB_SRC)/edgeMesh/lnInclude \

 -I$(LIB_SRC)/finiteVolume/lnInclude

EXE_LIBS = \

 -lfiniteVolume \

 -ldecompositionMethods \

 -lmeshTools \

 -ldynamicMesh \

 -lautoMesh

To make it possible for all the utilities to be run -ldynamicFvMesh \ should be added to this,

add this by typing

vi Make/options

Change it to this:

18

EXE_INC = \

 -I$(LIB_SRC)/decompositionMethods/decompositionMethods/lnInclude \

 -I$(LIB_SRC)/autoMesh/lnInclude \

 -I$(LIB_SRC)/meshTools/lnInclude \

 -I$(LIB_SRC)/triSurface/lnInclude \

 -I$(LIB_SRC)/dynamicMesh/dynamicMesh/lnInclude \

 -I$(LIB_SRC)/edgeMesh/lnInclude \

 -I$(LIB_SRC)/finiteVolume/lnInclude \

 -I$(LIB_SRC)/dynamicMesh/dynamicFvMesh/lnInclude \

 -I$(LIB_SRC)/dynamicMesh/dynamicMesh/lnInclude

EXE_LIBS = \

 -lfiniteVolume \

 -ldecompositionMethods \

 -lmeshTools \

 -lengine \

 -ldynamicMesh \

 -ldynamicFvMesh \

 -ldynamicMesh \

 -llduSolvers \

 -lautoMesh

Save and exit.

Similarly to what has been done to the options file, the include header files that are written

at the start of each program also needs to be added.

Start by opening mysnappyHexMesh.C by typing:

vi mysnappyHexMesh.C

And the code below should look like this:

Application

 snappyHexMesh

Description

 Automatic split hex mesher. Refines and snaps to surface.

---/

#include "argList.H"

#include "Time.H"

#include "fvMesh.H"

#include "autoRefineDriver.H"

#include "autoSnapDriver.H"

#include "autoLayerDriver.H"

#include "searchableSurfaces.H"

#include "refinementSurfaces.H"

#include "shellSurfaces.H"

#include "decompositionMethod.H"

#include "fvMeshDistribute.H"

#include "wallPolyPatch.H"

#include "refinementParameters.H"

Just below this i.e. on line 47, add:

19

#include "dynamicFvMesh.H"

#include "polyMesh.H"

#include "undoableMeshCutter.H"

#include "hexCellLooper.H"

#include "cellSet.H"

#include "twoDPointCorrector.H"

#include "directions.H"

#include "OFstream.H"

#include "multiDirRefinement.H"

#include "labelIOList.H"

#include "wedgePolyPatch.H"

#include "plane.H"

#include "cellCuts.H"

#include "cellSet.H"

#include "meshCutter.H"

#include "directTopoChange.H"

#include "mapPolyMesh.H"

#include "fvCFD.H"

#include "pointFields.H"

#include "Istream.H"

#include "pointMesh.H"

Save and exit.

To test so nothing has been changed compile by typing:

wclean

wmake

All that's been done now is to let the compiler know what files that needs to be read for the

final code to work.

4.3 Changes to mysnappyHexMesh.C
Open mysnappyHexMesh.C again, and go down to line 380 and the piece of code below

should be seen:

 // Now do the real work -refinement -snapping –layers

 // ~~

 Switch wantRefine(meshDict.lookup("castellatedMesh"));

 Switch wantSnap(meshDict.lookup("snap"));

 Switch wantLayers(meshDict.lookup("addLayers"));

These lines creates booleans (true or false) of what the user has written in

snappyHexMeshDict (i.e. if the user has put "snap true;" in the dictionary, this will be read in

to the code and the boolean value "wantSnap" will be put to true). In the new code,

mysnappyHexMesh, more options like this should be added, so, after the line Switch

wantLayers(meshDict.lookup("addLayers"));

Add:

 Switch wantProjection(meshDict.lookup("projection"));

 Switch wantDynMesh(meshDict.lookup("DynMesh"));

 Switch wantRefineMesh(meshDict.lookup("refineMesh"));

 Switch wantBoundaryLayer(meshDict.lookup("boundaryLayer"));

20

Also add:

 if (wantRefineMesh)

 {

 scalar nRefs=readScalar(meshDict.lookup("nRefinements"));

 }

 else

 {

 scalar nRefs=0;

 }

 bool notLast=true;

 if (Testing==nRefs+1)

 {

 Testing=10;

 notLast=false;

 }

The last thing added is to enable another option, namely to be able to run the refinement

several times.

Around line 437 the code below should exist.

 if (wantSnap)
 {

 cpuTime timer;

 autoSnapDriver snapDriver

 (

 meshRefiner,

 globalToPatch

);

 // Snap parameters

 snapParameters snapParams(snapDict);

 if (!overwrite)

 {

 const_cast<Time&>(mesh.time())++;

 }

 snapDriver.doSnap(snapDict, motionDict, snapParams);

 writeMesh

 (

 "Snapped mesh",

 meshRefiner,

 debug

);

 Info<< "Mesh snapped in = "

 << timer.cpuTimeIncrement() << " s." << endl;

 }

21

Change all of the above to the lines below:

if (wantSnap || wantProjection)

 {

 if (wantProjection)

 {

 pointMesh pMesh(mesh);

 pointVectorField pointMotionU

 (

 IOobject

 (

 "pointMotionU",

 runTime.timeName(),

 mesh,

 IOobject::MUST_READ,

 IOobject::AUTO_WRITE

),

 pMesh

);

 }

 cpuTime timer;

 autoSnapDriver snapDriver

 (

 meshRefiner,

 globalToPatch

);

 // Snap parameters

 snapParameters snapParams(snapDict);

 if (!overwrite)

 {

 const_cast<Time&>(mesh.time())++;

 }

 snapDriver.doSnap(snapDict, motionDict, snapParams);

 writeMesh

 (

 "Snapped mesh",

 meshRefiner,

 debug

);

 Info<< "Mesh snapped in = "

 << timer.cpuTimeIncrement() << " s." << endl;

 }

 if (wantRefineMesh && notLast)

 {

 # include "refineMesh.H"

 }

 if (wantDynMesh && Testing==10)

 {

 scalar nDynIter=readScalar(meshDict.lookup("nDynIter"));

 # include "moveDynamicMesh.H"

 }

 if (wantBoundaryLayer && Testing==10)

 {

 # include "createWeights.H"

 //splitting the closest row of cells in to nLayer amount of

cells. using the

 //souce code from refineWallLayer.C.

 scalar weight=0;

 for(int i=0;i<nLayers-2;i++)

 {

22

 //calculating the weighted place to cut the mesh for this

itteration.

 Info << "weight =" << Li[i] << endl;

 weight=Li[i];

 # include "refineBoundaryWallLayer.H"

 }

 }

By adding this code all the new options are added, i.e. it is now (almost) possible to run the

program and all the new utilities can be used. There is however three more things needed to

be done.

First since this code is supposed to be able to run several times, a for-loop needs to be

added, this for-loop goes around most of the main program, so around line 140, the code

below can be seen:

int main(int argc, char *argv[])

{

 argList::validOptions.insert("overwrite", "");

include "setRootCase.H"

include "createTime.H"

 runTime.functionObjects().off();

include "createMesh.H"

Add here a for-loop so it looks like below:

int main(int argc, char *argv[])

{

 for (int Testing=1;Testing<=10;Testing++)

 {

 argList::validOptions.insert("overwrite", "");

include "setRootCase.H"

include "createTime.H"

 runTime.functionObjects().off();

include "createMesh.H"

Then at the bottom of the code, at around line 675 the code below should be seen.

 Info<< "Finished meshing in = "

 << runTime.elapsedCpuTime() << " s." << endl;

 Info<< "End\n" << endl;

 return(0);

}

Add a } here to close the for-loop so it looks like this:

 Info<< "Finished meshing in = "

 << runTime.elapsedCpuTime() << " s." << endl;

23

 Info<< "End\n" << endl;

 }

 return(0);

}

In the refinement part of the program, refineMesh.H is called for, and refineMesh.H in turn

uses a lot of functions that should be outside of the main function. To add all these functions

go to line 108 in mysnappyHexMesh.C and add the code below:

#include "refineMeshStuff.H"

I.e. it should look like this:

 << exit(FatalError);

 }

 return mergeDist;

}

#include "refineMeshStuff.H"

// Write mesh and additional information

void writeMesh

(

 const string& msg,

Now all the editing in mysnappyHexMesh.C is done, let's continue with the .H files.

4.4 Creation of createWeights.H
In the code a file called createWeights.H is called for, but this file is not created yet, to do

this, write:

vi createWeights.H

Copy the following lines in to it.

//reading the dictionary for the layer properties.

scalar nLayers=readScalar(meshDict.lookup("nLayers"));

scalar stretching=readScalar(meshDict.lookup("stretching"));

nLayers++;

// label patchName=readLabel(meshDict.lookup("patch"));

//Calculating the length of the cell that's going to be refined (in weighted

terms).

scalar L[100];

scalar Li[100];

L[0]=0;

L[1]=1;

for(int j=1;j<nLayers-1;j++)

{

 L[j+1]=stretching*(L[j]-L[j-1])+L[j];

}

24

int k=0;

for(int i=nLayers-2;i>=1;i--)

{

 Li[k]=1-(L[i+1]-L[i])/L[i+1];

 Info << "weightedthings =" << Li[k] << endl;

 k=k+1;

}

4.5 Changes to refineMesh.H
Open refineMesh.H by typing:

vi refineMesh.H

Remove the first 298 lines of code by typing

298dd

This will remove all the functions and the first lines in the main function, the file should now

start like this:

include "createPolyMesh.H"

 const word oldInstance = mesh.pointsInstance();

After the lines shown above, copy

pointMesh pMesh(mesh);

pointVectorField pointMotionU

(

 IOobject

 (

 "pointMotionU",

 runTime.timeName(),

 mesh,

 IOobject::MUST_READ,

 IOobject::AUTO_WRITE

),

 pMesh

);

After that, go down to the bottom of the code, and remove the last ‘}’.

And then save and exit.

Open refineMeshStuff.H by typing:

vi refineMeshStuff.H

Go to line 288 by typing

:288

Delete all the code below, i.e. delete all the code that's in the main function, including the

main function itself.

Save and exit.

25

4.6 Changes to moveDynamicMesh.H
Edit the moveDynamicMesh file by typing:

vi moveDynamicMesh.H

Remove the 43 first lines by typing:

43dd

The file will now look like this:

include "setRootCase.H"

include "createTime.H"

include "createDynamicFvMesh.H"

 while (runTime.loop())

 {

 Info<< "Time = " << runTime.timeName() << endl;

 if (isDir(runTime.path()/"VTK"))

 {

 Info << "Clear VTK directory" << endl;

 rmDir(runTime.path()/"VTK");

 }

 mesh.update();

include "checkVolContinuity.H"

 mesh.checkMesh(true);

 runTime.write();

 Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"

 << " ClockTime = " << runTime.elapsedClockTime() << " s"

 << nl << endl;

 }

 Info<< "End\n" << endl;

 return 0;

}

//

//

Change the while-loop:

 while (runTime.loop())

To a for-loop:

 for(int i=0;i<nDynIter;i++)

Comment or removed the include continuity header file:

26

include "checkVolContinuity.H"

Too:

//# include "checkVolContinuity.H"

And remove the last }.

The changes to moveDynamicMesh.H are now done, just Save and Exit.

4.7 Changes to refineBoundaryWallLayer.H
Open refineBoundaryWallLayer.H by typing:

vi refineBoundaryWallLayer.H

Remove the 54 first lines by typing

54dd

This will make the first lines look like:

include "setRootCase.H"

include "createTime.H"

 runTime.functionObjects().off();

include "createPolyMesh.H"

 const word oldInstance = mesh.pointsInstance();

 word patchName(args.additionalArgs()[0]);

 scalar weight(readScalar(IStringStream(args.additionalArgs()[1])()));

 bool overwrite = args.optionFound("overwrite");

Change these lines so it says:

//reading the dictionary for the layer properties.

 scalar nLayers=readScalar(meshDict.lookup("nLayers"));

nLayers++;

//Calculating the length of the cell that's going to be refined (in weighted

terms).

include "setRootCase.H"

include "createTime.H"

 runTime.functionObjects().off();

include "createPolyMesh.H"

 const word oldInstance = mesh.pointsInstance();

 word patchName

 (

 meshDict.lookup("patch")

);

 bool overwrite = args.optionFound("overwrite");

After that, go down to the bottom of the code, and remove the last ‘}’.

Save and exit.

27

With this change the code is complete, and it's just to compile it by typing:

wclean

wmake

There are now a lot of files that isn’t used by the program, which can therefore be deleted,

to do this type:

rm -r refineWallLayer

rm -r refineMesh

rm -r moveDynamicMesh

28

5 Explanation of the changes to

mysnappyHexMesh
Below the changes to mysnappyHexMesh will be explained in further detail.

5.1 mysnappyHexMesh.C
mysnappyHexMesh.C is the base of the new code and is obviously based on

snappyHexMesh.C. The changes or additions to snappyHexMesh.C are rather extensive.

In mysnappyHexMesh.C the lines shown below were added;

 Switch wantProjection(meshDict.lookup("projection"));

 Switch wantDynMesh(meshDict.lookup("DynMesh"));

 Switch wantRefineMesh(meshDict.lookup("refineMesh"));

 Switch wantBoundaryLayer(meshDict.lookup("boundaryLayer"));

The code above makes it so that the program reads the snappyHexMeshDict for how to deal

with the new options. In the code, a bit further down a bunch of “if’s” can be seen, i.e. if

(wantRefine), if (wantSnap) and if (wantLayer).

 If (wantSnap) was changed to if (wantSnap || wantProjection) this means that the

projection option is largely the same as the snap option. However just below this change is

another addition, namely

if (wantProjection)

 {

 pointMesh pMesh(mesh);

 pointVectorField pointMotionU

 (

 IOobject

 (

 "pointMotionU",

 runTime.timeName(),

 mesh,

 IOobject::MUST_READ,

 IOobject::AUTO_WRITE

),

 pMesh

);

 }

This piece of code shows that if the “projection” option is used, a file called pointMotionU

needs to exist in the 0/ directory. The pointMotionU file is needed for the

moveDynamicMesh to move the internal mesh points and the code just reads the

information in the 0/ time directory, and writes it in the next time directories as well.

The if (wantRefineMesh && notLast) is there to activate the refineMesh.H code if refineMesh

is wanted and it is not the last iteration of refinements. More on the refineMesh.H code can

29

be found in chapter 5.1.1. The reason refineMesh should not be used in the last iteration is

due to how the code is placed (below wantProjection). If this restriction was not there

refineMesh would always be used after a snap, which isn’t really ideal for the last iteration,

because the mesh would then be very fine, but might not follow the surface to the degree it

should be able too.

The code inside moveDynamicMesh.H is explained further in chapter 5.1.2, the

calculateWeights.H code is explained in chapter 5.1.3 and the refineBoundaryWallLayer code

is explained in chapter 5.1.4.

5.1.1 refineMesh.H
RefineMesh.H is pretty much the same as refineMesh.C, except the initial lines are removed.

refineMesh.H, just as refineMesh.C refines the mesh, if a refineMeshDict is present in the

system folder the user can choose to refine in only one direction, but base-line all directions

are refined equally (all hexagons are split in the middle, i.e. 1 hexagon becomes 8 hexagons)

the refineMesh.H file can be seen in Appendix 1 and a figure of how refineMesh.C works can

be seen in figure 11.

Figure 11, the figure to the left shows a coarse mesh whereas the right figure shows how the

coarse mesh would look after refineMesh.C is used.

refineMesh.C can be found in the folder

$WM_PROJECT_DIR/applications/utilities/mesh/manipulation/refineMesh whereas the

refineMesh.H should be placed in the mysnappyHexMesh folder.

30

5.1.2 moveDynamicMesh.H
moveDynamicMesh.H utilizes the same code as moveDynamicMesh.C except the .C file has a

while-loop that breaks on time specified in the controlDict, and the .H file has a for-loop that

runs specified on the nDynIter value specified in snappyHexMeshDict; the code for the .H file

can be seen in Appendix 2.

moveDynamicMesh.C can be found in the folder $WM_PROJECT_DIR/ applications/

utilities/ mesh/ manipulation/ moveDynamicMesh whereas the moveDynamicMesh.H

should be placed in the mysnappyHexMesh folder.

5.1.3 createWeights.H
refineWallLayer.C needs two input parameters, the boundary on which to create a new layer

and the weighting of where the new layer will be created. The weighting factor should be a

value between 0 and 1 and defines how much of the first cell that should be cut i.e. if the

current cells should be split in half, one would enter 0.5, the Figure 12 below shows how a

square block is refined depending on the weighting value added.

Figure 12, these figures above show how refineWallLayer.C works on a mesh when the
weighting factor is set to 0.1 0.5 and 0.9 respectively.

To take the code from refineWallLayer.C to create a full on boundary layer, the weighting

factor needs to be calculated for several points and then refined one by one. This is done by

two for-loops, one which calculates the distance for each new cell, assuming the first cell

height is 1, and then the other for-loop calculates the weighting factor for each new layer.

This code needs two input parameters, the number of layers that should be created

(nLayers) and how much each cell is allowed to grow (shearing), so with a shearing factor of

1, the layer closest to the snapped surface will be divided in to nLayers of equal sized cells;

Below the code for the createWeights.H can be seen.

 //reading the dictionary for the layer properties.

 scalar nLayers=readScalar(meshDict.lookup("nLayers"));

 scalar stretching=readScalar(meshDict.lookup("stretching"));

 nLayers++;

 // label patchName=readLabel(meshDict.lookup("patch"));

 //Calculating the length of the cell that's going to be refined

(in weighted terms).

 scalar L[100];

 scalar Li[100];

31

 L[0]=0;

 L[1]=1;

 for(int j=1;j<nLayers-1;j++)

 {

 L[j+1]=stretching*(L[j]-L[j-1])+L[j];

 }

 int k=0;

 for(int i=nLayers-2;i>=1;i--)

 {

 Li[k]=1-(L[i+1]-L[i])/L[i+1];

 Info << "weightedthings =" << Li[k] << endl;

 k=k+1;

 }

 //splitting the closest row of cells in to nLayer amount of

cells. using the souce code from refineWallLayer.C.

So for example if one wants to create a boundary layer which has 5 layers, and with an
allowed shearing of 1.2 a square block would look like the Figure 13.

Figure 13, the figure above shows how a box (to the left) looks when
refineBoundaryWallLayer is used on it (to the right).

5.1.4 refineBoundaryWallLayer.H
RefineBoundaryWallLayer.H is pretty much the same as refineWallLayer.C except the initial

lines are removed; the code can be seen in Appendix 3.

refineWallLayer.C can be found in the folder

$WM_PROJECT_DIR/applications/utilities/mesh/advanced/refineWallLayer whereas the

refineBoundaryWallLayer.H should be placed in the mysnappyHexMesh folder.

32

6 Creation of snappyTestCase
To test the code of mysnappyHexMesh out a test case can be created, how to create it will

be described in this chapter, and then further explanations of the files and dictionaries

needed, can be read in chapter 7.

snappyTestCase needs a lot of different dictionaries, most of them, including the .stl surface

used can be found in the tutorial SnakeRiverCanyon, therefore start by copying the tutorial.

cp -r $WM_PROJECT_DIR/tutorials/mesh/moveDynamicMesh/SnakeRiverCanyon

$WM_PROJECT_USER_DIR/run/snappyTestCase

To enter the test case type:

cd $WM_PROJECT_USER_DIR/run/snappyTestCase

The directory should look something like this:

snappyTestCase

-0/

--pointDisplacement

-constant/

--dynamicMeshDict

--transportProperties

--polyMesh/

---blockMeshDict

---boundary

--triSurface/

---ACROSSCYN.JPG

---AcrossCyn.XYZ

---AcrossRiver.stl.gz

-system/

--controlDict

--decomposeParDict

--fvSchemes

--fvSolution

An important file that's missing from this directory is the snappyHexMeshDict which should

be placed in the system/ directory. It can be grabbed from any of the snappyHexMesh

tutorials, or the provided dictionary that's existing with the snappyHexMesh code. To grab

the snappyHexMeshDict from the snappyHexMesh code simply type:

cp

$WM_PROJECT_DIR/applications/utilities/mesh/generation/snappyHexMesh/sn

appyHexMeshDict $WM_PROJECT_USER_DIR/run/snappyTestCase/system/.

33

6.1 Changes to snappyHexMeshDict

Open snappyHexMeshDict by typing:

vi system/snappyHexMeshDict

Go down to line 22 and add:

projection true;

DynMesh true;

refineMesh true;

boundaryLayer true;

stretching 1.2;

nLayers 3;

nRefinements 2;

nDynIter 10;

patch AcrossRiver_patch0;

These are the options that were specified in the code, and will be described further in

chapter 7.3.

Set castellatedMesh and snap to false by changing:

castellatedMesh true;

snap true;

addLayers false;

To:

castellatedMesh false;

snap false;

addLayers false;

Some more changes that need to be done is changing the geometry sub-dictionary, i.e.

geometry

{

 box1x1x1

 {

 type searchableBox;

 min (1.5 1 -0.5);

 max (3.5 2 0.5);

 }

 sphere.stl

 {

 type triSurfaceMesh;

 //tolerance 1E-5; // optional:non-default tolerance on

intersections

 //maxTreeDepth 10; // optional:depth of octree. Decrease only in

case

 // of memory limitations.

 // Per region the patchname. If not provided will be

<name>_<region>.

34

 regions

 {

 secondSolid

 {

 name mySecondPatch;

 }

 }

 }

 sphere2

 {

 type searchableSphere;

 centre (1.5 1.5 1.5);

 radius 1.03;

 }

};

This should be changed to:

geometry

{

 AcrossRiver.stl

 {

 type triSurfaceMesh;

 name AcrossRiver;

 }

 refinementBox

 {

 type searchableBox;

 min (659531 4.7513e+06 1028);

 max (662381 4.75454e+06 1200);

 }

};

Inside the castellatedMeshControls at the end of the controls there’s a option called location

in mesh, looking like this:

 // Mesh selection

 // ~~~~~~~~~~~~~~

 // After refinement patches get added for all refinementSurfaces and

 // all cells intersecting the surfaces get put into these patches. The

 // section reachable from the locationInMesh is kept.

 // NOTE: This point should never be on a face, always inside a cell,

even

 // after refinement.

 locationInMesh (5 0.28 0.43);

Change that too:

 locationInMesh (659535 4.7513e+06 1328);

That is all that needs to change in snappyHexMeshDict, save and exit.

35

6.2 Changes to dynamicMeshDict

Open dynamicMeshDict by typing:

vi constant/dynamicMeshDict

The information below should then be seen.

dynamicFvMesh dynamicMotionSolverFvMesh;

motionSolverLibs ("libfvMotionSolvers.so");

solver displacementSBRStress; //displacementLaplacian;

//displacementSBRStress;

diffusivity quadratic quadratic inverseDistance 1(minZ);

//solver velocityComponentLaplacian z;

//diffusivity uniform;

//diffusivity directional (1 200 0);

// diffusivity motionDirectional (1 1000 0);

// diffusivity file motionDiffusivity;

diffusivity quadratic inverseDistance 1(minZ);

// diffusivity exponential 2000 inverseDistance 1(movingWall);

First of all the solver should be changed, i.e. where it says:

solver displacementSBRStress; //displacementLaplacian;

//displacementSBRStress;

should be changed to:

solver velocityLaplacian;

The diffusivity just below should be removed or commented, i.e.

diffusivity quadratic quadratic inverseDistance 1(minZ);

should be written as:

//diffusivity quadratic quadratic inverseDistance 1(minZ);

Then instead of it saying:

diffusivity quadratic inverseDistance 1(minZ);

minZ should be changed for maxZ, i.e. it should say:

diffusivity quadratic inverseDistance 1(maxZ);

The final version of dynamicMeshDict should then look something like this:

dynamicFvMesh dynamicMotionSolverFvMesh;

motionSolverLibs ("libfvMotionSolvers.so");

solver velocitytLaplacian;

36

//diffusivity quadratic quadratic inverseDistance 1(minZ);

//solver velocityComponentLaplacian z;

//diffusivity uniform;

//diffusivity directional (1 200 0);

// diffusivity motionDirectional (1 1000 0);

// diffusivity file motionDiffusivity;

diffusivity quadratic inverseDistance 1(maxZ);

// diffusivity exponential 2000 inverseDistance 1(movingWall);

The changes to dynamicMeshDict are now done, just save and quit.

6.3 Changes to blockMeshDict

The only change needed in blockMeshDict is to change the boundary minZ seen below:

patches

(

 wall maxX

 (

 (3 7 6 2)

)

 wall minZ

 (

 (0 4 7 3)

)

To:

patches

(

 wall maxX

 (

 (3 7 6 2)

)

 wall AcrossRiver_patch0

 (

 (0 4 7 3)

)

6.4 Changes of pointDisplacement

First of all since the solver velocityLaplacian is supposed to be used the pointDisplacement

file should actually be a pointMotion file, start by renaming the pointDisplacement file to

pointMotionU by typing:

mv 0/pointDisplacement 0/pointMotionU

Now it's time to edit the pointMotionU file, start by opening the file by typing:

vi 0/pointMotionU

Since the pointMotionU file was changed from a displacement file, the dimensions will be

wrong, change the dimensions from:

dimensions [0 1 0 0 0 0 0];

37

Too:

dimensions [0 1 -1 0 0 0 0];

On line 29 the boundary condition for minZ will start and look like below:

 minZ

 {

 type surfaceDisplacement;

 value uniform (0 0 0);

 // Clip displacement to surface by max deltaT*velocity.

 velocity (10 10 10);

 geometry

 {

 AcrossRiver.stl

 {

 type triSurfaceMesh;

 }

 };

 // Find projection with surface:

 // fixedNormal : intersections along prespecified direction

 // pointNormal : intersections along current pointNormal of

patch

 // nearest : nearest point on surface

 // Other

 projectMode fixedNormal;

 // if fixedNormal : normal

 projectDirection (0 0 1);

 //- -1 or component to knock out before doing projection

 wedgePlane -1;

 //- Points that should remain fixed

 //frozenPointsZone fixedPointsZone;

 }

Since the lower boundary should be fixed all of the above should be changed to:

 AcrossRiver_patch0

 {

 type fixedValue;

 value uniform (0 0 0);

 }

Above that the boundary condition for maxZ should stand as well, looking like the below:

 maxZ

 {

 type fixedValue;

 value uniform (0 0 0);

 }

Since the upper boundary should move in a up and down motion, change the above too:

38

 maxZ

 {

 type timeVaryingUniformFixedValue;

 fileName "velocity";

 outOfBounds repeat;

 }

The pointMotionU file is now correct, just save and exit.

6.5 Creation of the "velocity" file

In the pointMotionU file a file called velocity was referenced to how the maxZ boundary

should move to create this file type, it should be located straight in the case folder:

vi velocity

And then just copy paste the below in to the file:

(

 (4.99 (0 0 -70))

 (10.0 (0 0 -70))

 (10.001 (0 0 70))

 (15.0 (0 0 70))

)

Save and quit.

6.6 Changes to the controlDict

Now most changes are done, the only thing remaining is to change a small thing in the

controlDict, do this by typing:

vi system/controlDict

Change the:

startFrom startTime;

To:

startFrom latestTime;

That's all that needs to be changed in this file, just save and quit.

The test case is now done, and the directory structure should look something like this:

snappyTestCase

-0/

--pointMotionU

-constant/

--dynamicMeshDict

--transportProperties

--polyMesh/

---blockMeshDict

39

---boundary

--triSurface/

---ACROSSCYN.JPG

---AcrossCyn.XYZ

---AcrossRiver.stl.gz

-system/

--snappyHexMeshDict

--controlDict

--decomposeParDict

--fvSchemes

--fvSolution

-velocity

It is now just to run the case by typing:

blockMesh

mysnappyHexMesh

40

7 Explanation of the test case for

mysnappyHexMesh
In this chapter the different files and dictionaries used in mysnappyHexMesh will be

explained in more detail so the user can get an understanding of what the files do, and why

they are there.

To utilize mysnappyHexMesh there are several files needed, all of them have been copied in

the test case. First of all, of course a .stl surface of the topology that should be snapped is

needed. Then a blockMeshDict file is needed to create an initial mesh. mysnappyHexMesh

requires its own dictionary called snappyHexMeshDict, If internal mesh motion is needed, a

dynamicMeshDict is also required.

7.1 .stl surface
The .stl surface should be placed in a folder called trisurface in the constant directory, i.e.

$caseFolder/constant/trisurface/<surfaceName>.stl should exist.

A stl surface is a surface built out of a lot of triangular surfaces which together creates a

complex geometry, these kind of files can be created by various mean, for example, most 3d-

generation software’s or meshing software’s can convert a surface to a .stl file.

7.2 blockMeshDict
A blockMeshDict needs to be created in a polyMesh folder in the constant directory, i.e.

$caseFolder/constant/polyMesh/blockMeshDict should exist. In the blockMeshDict there are

some things that needs to be specified, first of all, eight points or “vertices” needs to be

specified which will be the corners of the square that’s the base of the mesh.

The points then needs to be connected as a hex, and the different boundaries will need to be

specified, an example would be the code below.

One important thing for mysnappyHexMesh to be working is to have one of the boundaries

(the one closest to the surface) should be named

<NameOfThe.stlFile>_<NameOftheSurfaceInThe.stlFile>. I.e. for this case, where the .stl file

is called AcrossRiver.stl and the surface in the .stl file is called patch0, hence the boundary

should be called “AcrossRiver_patch0”.

convertToMeters 1;

vertices

(

 (659531 4.7513e+06 900)

 (659531 4.7513e+06 2100)

 (662381 4.7513e+06 2100)

 (662381 4.7513e+06 900)

 (659531 4.75454e+06 900)

41

 (659531 4.75454e+06 2100)

 (662381 4.75454e+06 2100)

 (662381 4.75454e+06 900)

);

blocks

(

 hex (0 1 2 3 4 5 6 7) (4 20 20) simpleGrading (1 1 1)

);

edges

(

);

patches

(

 wall maxX

 (

 (3 7 6 2)

)

 wall AcrossRiver_patch0
 (

 (0 4 7 3)

)

 wall maxZ

 (

 (2 6 5 1)

)

 wall minX

 (

 (1 5 4 0)

)

 wall minY

 (

 (0 3 2 1)

)

 wall maxY

 (

 (4 5 6 7)

)

);

mergePatchPairs

(

);

7.3 snappyHexMeshDict
Since snappyHexMesh is the basis of the operation, ofcourse a snappyHexMeshDict is

needed to specify how the mesh snapping should be handled. The snappyHexMeshDict

should be located in the system directory, i.e. $caseFolder/system/snappyHexMeshDict is

needed. As seen above snappyHexMeshDict has had some additions to it, and the options

below are the new ones.

projection true;

The projection option activates (true) or deactivates (false) the projection feature, i.e. if the
boundary should be snapped to the surface.

42

DynMesh true;

The DynMesh option activates (true) or deactivates (false) the moveDynamicMesh feature,
i.e. if the internal mesh points should be moved or not.

refineMesh true;

The refineMesh option activates (true) or deactivates (false) the refineMesh feature, i.e. if
the mesh should be refined or not.

boundaryLayer true;

The boundaryLayer option activates (true) or deactivates (false) the boundaryLayer feature,
i.e. if the mesh should get a boundary layer on the surface or not.

stretching 1.2;

Defines how much stretching is allowed when using the boundary wall layer feature i.e. how
much bigger each cell-layer are allowed to become (if the first layer has the height of 1 unit,
next layer will be 1.2 units high).

nLayers 5;

Defines how many layers that should be created when using the boundary wall layer feature.

nRefinements 2;

Defines how many times the mesh should be refined, and snapped to the surface.

nDynIter 10;

Defines how many time steps the moveDynamicMesh feature should do, always needs to be
an even number.

patch AcrossRiver_patch0;

Defines which patch the boundary layer should be put on, in general this means that where

“patch” stands the name of the boundary which is supposed to be snapped should be

written here, but if for some reason a person want boundary layer somewhere else, for

example on the top boundary it’s just to type maxZ instead.

In snappyHexMeshDict there are other things that are important for the mesh quality, and

it’s the settings for the snapping, in the snapControls subdictionary:

snapControls

{

 //- Number of patch smoothing iterations before finding correspondence

 // to surface

 nSmoothPatch 3;

 //- Relative distance for points to be attracted by surface feature

point

 // or edge. True distance is this factor times local

 // maximum edge length.

 tolerance 4.0;

 //- Number of mesh displacement relaxation iterations.

 nSolveIter 30;

 //- Maximum number of snapping relaxation iterations. Should stop

 // before upon reaching a correct mesh.

 nRelaxIter 5;

43

}

The importance of these values is explained in chapter 2.3.

7.4 dynamicMeshDict
The dynamicMeshDict is only needed if the internal mesh needs to be moved, i.e. the

DynMesh option in snappyHexMeshDict is enabled. If the dictionary is needed it should be

placed in the constant directory i.e. $caseFolder/constant/dynamicMeshDict should exist.

More about the dynamicMeshDict is explained in the basics of moveDynamicMesh chapter.

However the options that’s needed or preferred for this case is displayed below.

dynamicFvMesh dynamicMotionSolverFvMesh;

motionSolverLibs ("libfvMotionSolvers.so");

solver velocityLaplacian;

diffusivity quadratic inverseDistance 1 (maxZ);

//diffusivity exponential -0.01 inverseDistance 1 (AcrossRiver_patch0);

When using dynamicMesh with the “velocityLaplacian” solver, an additional file is needed,

namely the pointMotionU file, this file describes the motion of the boundaries and will be

explained further in chapter 6.2.5.

7.5 pointMotionU
The pointMotionU file needs to be placed in the 0/ directory and similarly to a regular U file

that’s used when solving fluid motion, the pointMotionU file is there to specify the boundary

conditions of the mesh motion. Something special about this though is the fact that it’s a

point file, i.e. all values are specified at the points, instead of the cell centers where the

information usually is located. How this file should look can be seen in the code below.

dimensions [0 1 -1 0 0 0 0];

internalField uniform (0 0 0);

boundaryField

{

 maxX

 {

 type slip;

 }

 maxY

 {

 type slip;

 }

 minY

 {

 type slip;

 }

 maxZ

 {

44

 type timeVaryingUniformFixedValue;

 fileName "velocity";

 outOfBounds repeat;

 }

 AcrossRiver_patch0

 {

 type fixedValue;

 value uniform (0 0 0);

 }

 minX

 {

 type slip;

 }

}

As can be seen this is a usual field file for OpenFoam where the dimension, internal field and
external field is specified. The two first options are nothing special, the dimension is
specified as m/s because it’s velocityLaplacian that’s used, and the internal field is set to
uniform 0. For the external field comes some important settings though. In general, the
boundary which is snapped should get a locked boundary condition, i.e. a fixed value of
uniform 0 like shown below.

 AcrossRiver_patch0

 {

 type fixedValue;

 value uniform (0 0 0);

 }

The boundary opposite to the snapped boundary is most important though. Namely the
boundary opposite of the snapped boundary should get a condition that changes with time
more specifically that it varies between a positive and a negative value, this can be achieved
in many ways, and only one will be mentioned here.

By putting the boundary condition as a timeVayingUniformFixedValue the boundary motion
can be controlled in an external file, how this file should look will be mentioned in chapter
6.2.6. The code would then look like below.

 maxZ

 {

 type timeVaryingUniformFixedValue;

 fileName "velocity";

 outOfBounds repeat;

 }

Where the “fileName” option specifies what file should be used, and the option
“outOfBounds” specifies how OpenFoam should handle times which isn’t defined in the file.

All other boundaries should be selected with a slip condition, like the code below.

45

 minY

 {

 type slip;

 }

7.6 Velocity boundary file
The “velocity” file, or the file which specifies how the boundary opposite of the snapped

surface should move needs to be placed directly in the case folder i.e. a file

$CaseFolder/velocity should exist. And should look something like the code below

(

 (5 (0 0 -70))

 (10.0 (0 0 -70))

 (10.001 (0 0 70))

 (15.0 (0 0 70))

)

This file varies greatly on the settings used in snappyHexMeshDict and the two options that

need to be considered when writing this file is the “nRefinements” option and the “nDynIter”

option.

The nRefinements option defines at what time the dynamic iterations start, this time can be

calculated as 1+2*nrefinements, so for the example used here where nRefinements is 2, the

starting time would be 5.

The nDynIter option defines at what time the dynamic iterations ends and also at what time

the boundary should start moving upwards, the end time for the dynamic iterations can be

calculated as 1+2*nRefinements + nDynIter, so for the example used here where

nRefinements is 2, nDynIter is 10 the end time would be 15.

For a general case the velocity file could be written as

(

 (1+2*nRefinements (0 0 -70))

 (1+2*nRefinements + nDynIter/2 (0 0 -70))

 (1+2*nRefinements + nDynIter/2 +0.001 (0 0 70))

 (1+2*nRefinements + nDynIter (0 0 70))

)

The last option in this file is the velocity at which the boundary should move, this value

depends on how big the mesh is, and how many nDynIter that’s going to be made. For the

test case provided here, 70 worked well, if the amount of dynamic iterations would increase

or if the mesh size itself was smaller, the value would have to be smaller.

The reason the boundary needs to go down is to move the internal mesh points so they are

closer to the projected surface, however doing this the entire mesh get’s smaller, and to

keep the size ratio of the mesh, the boundary needs to be moved upwards.

46

7.7 Running the case
When all these things are set-up the only thing needed to do is to type >> blockMesh to

generate the base mesh, and then type >> mysnappyHexMesh in the command window, and

the mesh will be generated.

When the command mysnappyHexMesh has been written, the mesh manipulation will start,

for the test case above, the starting mesh and the first snapping will look like the figure 14.

Figure 14, the figure to the left shows how the mesh generated by blockMesh looks, i.e. this is
the initial mesh of which mysnappyHexMesh does its manipulations on, and the figure to the
right shows how the mesh looks like after the first snapping .

After the first snapping mysnappyHexMesh does the first refinement, and after that the

second snapping is done, this can be seen in figure 15.

Figure 15, the figure to the left shows how the mesh looks after the first refinement, and the
figure to the right shows how the mesh looks like after the second snapping.

When the second snapping is done, the second refinement and the third snapping begins,

this can be seen in figure 16.

47

Figure 16, the figure to the left shows how the mesh looks after the second refinement, and
the figure to the right shows how the mesh looks like after the third snapping.

With the third snapping, using a nRefinements of 2 the snapping and refining is now done,

and the internal mesh points needs to be moved slightly, this is done with the

moveDynamicMesh feature in a up and down motion, the two extreme points of the mesh

motion can be seen in figure 17.

Figure 17, the figure to the left shows how the mesh looks after half of the dynamic iterations
and the figure to the right shows how the mesh looks like after all dynamic iterations.

As can be seen the mesh moves down so that it is very compressed and then moves up to its

original size, with the internal mesh being much more compressed in the lower part of the

boundary compared to before.

When the internal mesh is moved all that’s left is to create the boundary wall layer, this is

done layer by layer and how it looks can be seen in figure 18.

48

Figure 18, the figure to the left shows how the mesh looks after the 2nd layer is created and
the figure to the right shows how the mesh looks after all layers have been created.

The mesh is now complete and some bigger figures can be seen below, where figure 19

shows the whole mesh and figure 20 is zoomed in on one part of the border to give a better

picture of how the boundary wall layer looks like.

Figure 19, one of the sides of the mesh generated by mysnappyHexMesh.

Figure 20, the mesh generated by mysnappyHexMesh can be seen in close up to the left and
then to the right the mesh is split in half to show how the internal mesh looks like.

49

8 Best Practices
This program, mysnappyHexMesh is very sensitive to changes in the initial settings of the

case. Therefore a chapter like this is most likely needed.

mysnappyHexMesh is built to snap the mesh to a surface, but due to the way

snappyHexMesh is programmed (snap to closest surface point) the quality of the mesh will

depend highly on how similar the initial mesh is to the surface that should be snapped.

Therefore, a rougher initial mesh (in the x- and y-direction), and a couple of mesh-

refinements during the snapping is a good way to go.

In general the moveDynamicMesh is bad, and will create a less than stellar mesh (i.e. the

mesh can become skewed and for example the boundary layer will not be of equal height

along the boundary). In general moveDynamicMesh should only be used if necessary due to

how the surface looks. The finer initial mesh (in the z-direction) the more the

moveDynamicMesh will need to be used, and also, the worse the final mesh becomes,

therefore a course mesh is better in the z-direction as well.

If the mesh is good in the x- and y-direction but not in the z-direction (in terms of amounts of

cells) then refineMesh with refineMeshDict can be used to refine only in the z-direction (this

is preferably done before creating the boundary layer).

If the initial mesh (after the first snap) has a bad shape, i.e. the mesh looks skewed, the value

nRelaxIter in snappyHexMeshDict should be increased, and this will lead to a longer mesh

creation time, but may solve the issue.

If the initial mesh (after the first snap) has some points which hasn’t snapped, either

increase the tolerance, or create a rougher initial mesh.

The surface can never cross an internal mesh point in the z-direction, but should also be

placed in such way that the mesh boundary needs to move as little as possible.

50

9 Further work for future improvements
As been mentioned earlier in chapter 7, the moveDynamicMesh feature has a chance to also

“destroy” the mesh if used incorrectly. This is because at the moment internal mesh motion

through moveDynamicMesh is exclusively done by an external motion in one of the

boundaries, this leads to a lesser degree of control.

Instead of using an existing feature (in this case dynamicMotionSolverFvMesh) one could

write a totally new one, which focused on moving internal mesh. Not due to a movement in

the boundary, but rather because of a “force” on the internal mesh point, where the force

on the point depends on how close it is to a specific boundary.

There are several improvements in the coding that could be done, for example, at the

moment; even if you’re not going to use moveDynamicMesh the pointMotionU file in the 0/

directory is still required.

51

References
[1] Xabier Pedruelo Tapia 2009: “Modelling of wind flow over complex terrain using
OpenFoam”
http://hig.diva-portal.org/smash/get/diva2:228936/FULLTEXT01
[2] Pirooz Moradnia 2007: “A tutorial on how to use Dynamic Mesh solver
IcoDyMFOAM”
http://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2007/PiroozMoradnia/OpenFOA
M-rapport.pdf

http://hig.diva-portal.org/smash/get/diva2:228936/FULLTEXT01

52

Appendix

Appendix 1 - refineMesh.H
include "createPolyMesh.H"

 const word oldInstance = mesh.pointsInstance();

//cpuTime timer;

 printEdgeStats(mesh);

pointMesh pMesh(mesh);

 pointVectorField pointMotionU

 (

 IOobject

 (

 "pointMotionU",

 runTime.timeName(),

 mesh,

 IOobject::MUST_READ,

 IOobject::AUTO_WRITE

),

 pMesh

);

 //

 // Read/construct control dictionary

 //

 bool readDict = args.optionFound("dict");

 bool overwrite = args.optionFound("overwrite");

 // List of cells to refine

 labelList refCells;

 // Dictionary to control refinement

 dictionary refineDict;

 if (readDict)

 {

 Info<< "Refining according to refineMeshDict" << nl << endl;

 refineDict =

 IOdictionary

 (

 IOobject

 (

 "refineMeshDict",

 runTime.system(),

 mesh,

 IOobject::MUST_READ,

 IOobject::NO_WRITE

)

);

 word setName(refineDict.lookup("set"));

 cellSet cells(mesh, setName);

 Pout<< "Read " << cells.size() << " cells from cellSet "

53

 << cells.instance()/cells.local()/cells.name()

 << endl << endl;

 refCells = cells.toc();

 }

 else

 {

 Info<< "Refining all cells" << nl << endl;

 // Select all cells

 refCells.setSize(mesh.nCells());

 forAll(mesh.cells(), cellI)

 {

 refCells[cellI] = cellI;

 }

 // Set refinement directions based on 2D/3D

 label axisIndex = twoDNess(mesh);

 if (axisIndex == -1)

 {

 Info<< "3D case; refining all directions" << nl << endl;

 wordList directions(3);

 directions[0] = "tan1";

 directions[1] = "tan2";

 directions[2] = "normal";

 refineDict.add("directions", directions);

 // Use hex cutter

 refineDict.add("useHexTopology", "true");

 }

 else

 {

 wordList directions(2);

 if (axisIndex == 0)

 {

 Info<< "2D case; refining in directions y,z\n" << endl;

 directions[0] = "tan2";

 directions[1] = "normal";

 }

 else if (axisIndex == 1)

 {

 Info<< "2D case; refining in directions x,z\n" << endl;

 directions[0] = "tan1";

 directions[1] = "normal";

 }

 else

 {

 Info<< "2D case; refining in directions x,y\n" << endl;

 directions[0] = "tan1";

 directions[1] = "tan2";

 }

 refineDict.add("directions", directions);

 // Use standard cutter

 refineDict.add("useHexTopology", "false");

54

 }

 refineDict.add("coordinateSystem", "global");

 dictionary coeffsDict;

 coeffsDict.add("tan1", vector(1, 0, 0));

 coeffsDict.add("tan2", vector(0, 1, 0));

 refineDict.add("globalCoeffs", coeffsDict);

 refineDict.add("geometricCut", "false");

 refineDict.add("writeMesh", "false");

 }

 string oldTimeName(runTime.timeName());

 if (!overwrite)

 {

 const_cast<Time&>(mesh.time())++; //runTime++;

 }

 // Multi-directional refinement (does multiple iterations)

 multiDirRefinement multiRef(mesh, refCells, refineDict);

 // Write resulting mesh

 if (overwrite)

 {

 mesh.setInstance(oldInstance);

 }

 mesh.write();

 // Get list of cell splits.

 // (is for every cell in old mesh the cells they have been split into)

 const labelListList& oldToNew = multiRef.addedCells();

 // Create cellSet with added cells for easy inspection

 cellSet newCells(mesh, "refinedCells", refCells.size());

 forAll(oldToNew, oldCellI)

 {

 const labelList& added = oldToNew[oldCellI];

 forAll(added, i)

 {

 newCells.insert(added[i]);

 }

 }

 Pout<< "Writing refined cells (" << newCells.size() << ") to cellSet "

 << newCells.instance()/newCells.local()/newCells.name()

 << endl << endl;

 newCells.write();

55

 //

 // Invert cell split to construct map from new to old

 //

 labelIOList newToOld

 (

 IOobject

 (

 "cellMap",

 runTime.timeName(),

 polyMesh::meshSubDir,

 mesh,

 IOobject::NO_READ,

 IOobject::AUTO_WRITE

),

 mesh.nCells()

);

 newToOld.note() =

 "From cells in mesh at "

 + runTime.timeName()

 + " to cells in mesh at "

 + oldTimeName;

 forAll(oldToNew, oldCellI)

 {

 const labelList& added = oldToNew[oldCellI];

 if (added.size())

 {

 forAll(added, i)

 {

 newToOld[added[i]] = oldCellI;

 }

 }

 else

 {

 // Unrefined cell

 newToOld[oldCellI] = oldCellI;

 }

 }

 Info<< "Writing map from new to old cell to "

 << newToOld.objectPath() << nl << endl;

 newToOld.write();

 // Some statistics.

 printEdgeStats(mesh);

56

Appendix 2 – moveDynamicMesh.H
if (wantDynMesh && Testing==10)

 {

 # include "setRootCase.H"

 # include "createTime.H"

 # include "createDynamicFvMesh.H"

 for(int i=0;i<nDynIter;i++)

 {

 if (!overwrite)

 {

 const_cast<Time&>(mesh.time())++;

 }

 Info<< "Time = " << runTime.timeName() << endl;

 if (isDir(runTime.path()/"VTK"))

 {

 Info << "Clear VTK directory" <<

endl;

 rmDir(runTime.path()/"VTK");

 }

 mesh.update();

 //# include "checkVolContinuity.H"

 mesh.checkMesh(true);

 runTime.write();

 Info<< "ExecutionTime = " << runTime.elapsedCpuTime()

<< " s"

 << " ClockTime = " << runTime.elapsedClockTime()

<< " s"

 << nl << endl;

 }

 Info<< "End\n" << endl;

 }

57

Appendix 3 – refineBoundaryWallLayer.H
//reading the dictionary for the layer properties.

 scalar nLayers=readScalar(meshDict.lookup("nLayers"));

nLayers++;

//Calculating the length of the cell that's going to be refined (in

weighted terms).

include "setRootCase.H"

include "createTime.H"

 runTime.functionObjects().off();

include "createPolyMesh.H"

 const word oldInstance = mesh.pointsInstance();

 word patchName

 (

 meshDict.lookup("patch")

);

 bool overwrite = args.optionFound("overwrite");

 label patchID = mesh.boundaryMesh().findPatchID(patchName);

 if (patchID == -1)

 {

 FatalErrorIn(args.executable())

 << "Cannot find patch " << patchName << endl

 << "Valid patches are " << mesh.boundaryMesh().names()

 << exit(FatalError);

 }

 const polyPatch& pp = mesh.boundaryMesh()[patchID];

 // Cells cut

 labelHashSet cutCells(4*pp.size());

 const labelList& meshPoints = pp.meshPoints();

 forAll(meshPoints, pointI)

 {

 label meshPointI = meshPoints[pointI];

 const labelList& pCells = mesh.pointCells()[meshPointI];

 forAll(pCells, pCellI)

 {

 cutCells.insert(pCells[pCellI]);

 }

 }

 Info<< "Selected " << cutCells.size()

 << " cells connected to patch " << pp.name() << endl << endl;

 //

 // List of cells to refine

58

 //

 bool useSet = args.optionFound("useSet");

 if (useSet)

 {

 word setName(args.option("useSet"));

 Info<< "Subsetting cells to cut based on cellSet" << setName <<

endl

 << endl;

 cellSet cells(mesh, setName);

 Info<< "Read " << cells.size() << " cells from cellSet "

 << cells.instance()/cells.local()/cells.name()

 << endl << endl;

 for

 (

 cellSet::const_iterator iter = cells.begin();

 iter != cells.end();

 ++iter

)

 {

 cutCells.erase(iter.key());

 }

 Info<< "Removed from cells to cut all the ones not in set " <<

setName

 << endl << endl;

 }

 // Mark all meshpoints on patch

 boolList vertOnPatch(mesh.nPoints(), false);

 forAll(meshPoints, pointI)

 {

 label meshPointI = meshPoints[pointI];

 vertOnPatch[meshPointI] = true;

 }

 // Mark cut edges.

 DynamicList<label> allCutEdges(pp.nEdges());

 DynamicList<scalar> allCutEdgeWeights(pp.nEdges());

 forAll(meshPoints, pointI)

 {

 label meshPointI = meshPoints[pointI];

 const labelList& pEdges = mesh.pointEdges()[meshPointI];

 forAll(pEdges, pEdgeI)

 {

 label edgeI = pEdges[pEdgeI];

 const edge& e = mesh.edges()[edgeI];

59

 label otherPointI = e.otherVertex(meshPointI);

 if (!vertOnPatch[otherPointI])

 {

 allCutEdges.append(edgeI);

 if (e.start() == meshPointI)

 {

 allCutEdgeWeights.append(weight);

 }

 else

 {

 allCutEdgeWeights.append(1 - weight);

 }

 }

 }

 }

 allCutEdges.shrink();

 allCutEdgeWeights.shrink();

 Info<< "Cutting:" << endl

 << " cells:" << cutCells.size() << endl

 << " edges:" << allCutEdges.size() << endl

 << endl;

 // Transfer DynamicLists to straight ones.

 scalarField cutEdgeWeights;

 cutEdgeWeights.transfer(allCutEdgeWeights);

 allCutEdgeWeights.clear();

 // Gets cuts across cells from cuts through edges.

 cellCuts cuts

 (

 mesh,

 cutCells.toc(), // cells candidate for cutting

 labelList(0), // cut vertices

 allCutEdges, // cut edges

 cutEdgeWeights // weight on cut edges

);

 directTopoChange meshMod(mesh);

 // Cutting engine

 meshCutter cutter(mesh);

 // Insert mesh refinement into directTopoChange.

 cutter.setRefinement(cuts, meshMod);

 // Do all changes

 Info<< "Morphing ..." << endl;

 if (!overwrite)

 {

 runTime++;

 }

 autoPtr<mapPolyMesh> morphMap = meshMod.changeMesh(mesh, false);

60

 if (morphMap().hasMotionPoints())

 {

 mesh.movePoints(morphMap().preMotionPoints());

 }

 // Update stored labels on meshCutter.

 cutter.updateMesh(morphMap());

 if (overwrite)

 {

 mesh.setInstance(oldInstance);

 }

 // Write resulting mesh

 Info << "Writing refined morphMesh to time " << runTime.timeName() <<

endl;

 mesh.write();

 Info << "End\n" << endl;

