

Example: Implementation of the rodFoam solver

(This can be viewed as en example of the 'modification' part of a student project - download files from course homepage)

rodFoam solves the Maxwell's equations. The code is inherently steady state, requiring an initial condition and boundary conditions.

Governing equations

- Maxwell's equations
 - $\nabla \times E = 0 \tag{1}$

where E is the electric field strength.

 $\nabla \cdot B = 0 \tag{2}$

where B is the magnetic flux density.

 $\nabla \times H = J \tag{3}$

where H is the magnetic field strength and J is current density.

Margarita Sass-Tisovskaya Governing equations

- Charge continuity
 - $\nabla \cdot J = 0 \tag{4}$
- Ohm's law

CHALMERS

 $J = \sigma E \tag{5}$

where σ is the electric conductivity

- Constitutive law
 - $B = \mu_0 H \tag{6}$

where μ_0 is the magnetic permeability of vacum

Combining Equations (1)-(6) and assuming Coulomb gauge condition ($\nabla \cdot A = 0$) leads to Poissons's equation for the magnetostatic fields and Laplace's equation for the electric potential.

- Equation for the electric potential:
 - $\nabla\cdot [\sigma(\nabla\phi)]=0$
- OpenFOAM representation:

solve (fvm::laplacian(sigma,ElPot));

• Equation for the magnetic potential:

$$\nabla^2 A = \mu_0 \sigma(\nabla \phi) \tag{8}$$

• OpenFOAM representation:

solve (fvm::laplacian(A) == sigma*muMag*(fvc::grad(ElPot)));

(7)

A description of the rodFoam solver

Important files:

- files and options files
- createFields.H
- rodFoam.C
- createFieldsGeometry.H
- IeEqn.H

Electric rod.

Computational domain

³SE

Boundary and initial conditions

• Boundary conditions:

	block 0, sides	block 1, sides	block1, top
Α	$\nabla A = 0$	$\nabla A = 0$	A = 0
ϕ	$\phi_{left} = 707, \phi_{right} = 0$	$\nabla \phi = 0$	$\nabla \phi = 0$

 \bullet The internal field and boundary conditions of σ are nonuniform:

 $\sigma = \begin{cases} 2700 & \text{if } x < R \text{ where } \mathbf{R} \text{ -radius of the block } \mathbf{1} \\ 1e - 5 & \text{otherwise} \end{cases}$

• Use setFields to set the internal field

Setting and running the case

Set up the case using the following files:

- constant/geometryProperties
- constant/transportProperties
- system/controlDict
- system/fvSchemes
- system/fvSolution

Run the case by:

• ./Allrun 2>&1 | tee log_Allrun

paraFoam plot.

• paraFoam

paraFoam plot.

Magnitude of magnetic potential vector A.

Gnuplot. Validation

- Run sample using dictionary system/sampleDict
- For this we need to extract the components:

foamCalc components A foamCalc components B

- Run sample
- Run gnuplot rodComparisonAxBz.plt
- Visualize using: ggv rodAxVSy.ps rodBzVSy.ps

Analytic solution

• Analytic solution for x component of magnetic potential vector A

$$A_x = \begin{cases} A_x(0) - \frac{\mu_0 J x^2}{4} & \text{if } r < R, \\ A_x(0) - \frac{\mu_0 J R^2}{2} [0.5 + \ln(r/R)] & \text{otherwise} \end{cases}$$

where $A_x(0) = 0.000606129$, J = 19.086e + 7 is the current density and R is the radius of the electric rod.

 \bullet Analytic solution for z component of magnetic field B

$$B_{z} = \begin{cases} \frac{\mu_{0}Jx}{2} & \text{if } r < R, \\ \frac{\mu_{0}JR^{2}}{2r} & \text{otherwise} \end{cases}$$

where J = 19.086e + 7 is the current density and R is the radius of the electric rod.

Gnuplot.Validation

Margarita Sass-Tisovskaya

CHALMERS

x-component of magnetic potential vector A vs radius of the domain.

155

Gnuplot. Validation

Margarita Sass-Tisovskaya

CHALMERS

z-component of the magnetic field B vs radius of the domain

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics

156