
Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 236

pyFoam, a user contribution

• Described in the OpenFOAMWiki:

http://openfoamwiki.net/index.php/Contrib_PyFoam
(openfoamwiki.net , Find 4.2 Forge, “BCs, physics models, other ”,

Libraries for other languages , PyFoam)

• pyFoam is NOT in the OpenFOAM distribution! You will have to install it separately!

• Features (some examples):

− Uses OpenFOAM libraries to connect to OpenFOAM.

− Execute applications, and analyse and modify their output.

− Run lots of parameter variations of the same case.

− Manipulate OpenFOAM dictionaries, such as for setting up new cases.

− Plot residuals on the fly using Gnuplot.

− View the block structure of a blockMeshDict (requires VTK, doesn’t work here).

• We will now use pyFoam to set up dictionaries and to plot information in the log file.

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 237

Installation procedure
Basic steps:

cd $HOME/OpenFOAM
mkdir linuxSrc
cd linuxSrc
svn co \
https://openfoam-extend.svn.sourceforge.net/svnroot /openfoam-extend/trunk/Breeder/other/scripting/PyFo am/
python setup.py install --prefix=$HOME/OpenFOAM

Add to ˜/.bashrc :

alias PF=’export FOAM_INST_DIR=$HOME/OpenFOAM; \
export PYTHONPATH=$FOAM_INST_DIR/PyFoam/lib/python-2 .3/site-packages:$PYTHONPATH; \
export PATH=$FOAM_INST_DIR/PyFoam/bin:$PATH’

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 238

Setting up a case from scratch

Basic method:

• Find out which solver you need to use for the specific problem.

• Copy a tutorial for that specific solver to your run directory:

cp -r $FOAM_TUTORIALS/incompressible/simpleFoam/pitzD aily $FOAM_RUN/simpleElbow
cd $FOAM_RUN/simpleElbow

• Modify all the dictionaries according to how you want to run your case (keep default

now).

• Modify the mesh by editing blockMeshDict and running blockMesh , or use a third-
party mesh-generator and a converter utility (fluentMeshToFoam usually works). Here:

cp $FOAM_TUTORIALS/incompressible/icoFoam/elbow/elbo w.msh .
fluentMeshToFoam elbow.msh

• Now, the patch names in the time directory is probably not in accordance with the ones

in constant/polyMesh/boundary

• Edit all the dictionaries in the time directory so that all the patch names in

constant/polyMesh/boundary are present. Also set the appropriate boundary con-

dition for each patch. This is a lot of work! There is however an option...

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 239

pyFoamCreateBoundaryPatches.py

• We will use the pyFoamCreateBoundaryPatches.py to set up the time dictionaries.

• For help:

pyFoamCreateBoundaryPatches.py --help

• Modify the 0/U,p,k,epsilon and controlDict dictionaries (get at course homepage):

pyFoamCreateBoundaryPatches.py --verbose --clear-unus ed 0/U
pyFoamCreateBoundaryPatches.py --verbose --overwrite - -filter="wall.+" \

--default="{’type’:’fixedValue’,’value’:’uniform (0 0 0)’}" 0/U
pyFoamCreateBoundaryPatches.py --verbose --overwrite - -filter="velocity-inlet-5" \

--default="{’type’:’fixedValue’,’value’:’uniform (1 0 0)’}" 0/U
pyFoamCreateBoundaryPatches.py --verbose --overwrite - -filter="velocity-inlet-6" \

--default="{’type’:’fixedValue’,’value’:’uniform (0 3 0)’}" 0/U
pyFoamCreateBoundaryPatches.py --verbose --clear-unus ed 0/p
pyFoamCreateBoundaryPatches.py --verbose --overwrite - -clear-unused --filter="pressure.+" \

--default="{’type’:’fixedValue’,’value’:’uniform 0’} " 0/p
pyFoamCreateBoundaryPatches.py --verbose --clear-unus ed 0/k
pyFoamCreateBoundaryPatches.py --verbose --overwrite - -filter="velocity-inlet.+" \

--default="{’type’:’turbulentIntensityKineticEnergy Inlet’,’intensity’:’0.1’, \
’value’:’uniform 0.375’}" 0/k

pyFoamCreateBoundaryPatches.py --verbose --clear-unus ed 0/epsilon
pyFoamCreateBoundaryPatches.py --verbose --overwrite - -filter="velocity-inlet.+" \

--default="{’type’:’turbulentMixingLengthDissipatio nRateInlet’, \
’mixingLength’: ’0.05’, ’value’:’uniform 14.855’}" 0/ep silon

pyFoamWriteDictionary.py system/controlDict endTime 50 0

• This also seems quite complicated, but if you use consistent naming, this can be re-used

for other cases.

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 240

Clean up, run and plot residuals on the fly

• We did not update 0/nuTilda and 0/R since we will use the kEpsilon model, which

does not use them. Delete them:

rm 0/nuTilda
rm 0/R

• Run simpleFoam on the case and plot residuals on-the-fly:

pyFoamPlotRunner.py simpleFoam

• You will now have plots of residuals, continuity error and bounding for the initial 500

iterations. In the terminal window where you ran the plotter you will have the entire

log file printed.

• There is now a PyFoam.simpleFoam.logfile with the log, for future use.

• Type pyFoamPlotRunner.py --help for additional information.

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 241

Plot a running case

• First re-run the case, sending output to a log file:
simpleFoam > log

Open a new terminal window and source OpenFOAM-1.5.x

• Go to the case and start a plotter:

cd $FOAM_RUN/simpleElbow
pyFoamPlotWatcher.py log

In the first terminal window:

• Set startFrom latestTime; , and endTime 1000;

• Continue running the case, appending to the log file:
simpleFoam >> log

The plotting should continue!

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 242

Close down the plotter

• Kill the plotter by doing CTRL-c in the plotter terminal window.
If it doesn’t work you will have to kill the process. Find the PID (Process ID) from the

terminal window where you started simpleFoam by typing:

ps -ef | grep pyFoamPlotWatcher.py
This will give something similar to:

hani 22729 25593 0 11:06 pts/235 00:00:00 /usr/bin/python \

/chalmers/sw/unsup/OpenFOAM/ThirdParty/PyFoam/bin/p yFoamPlotWatcher.py log

hani 31269 12789 0 11:15 pts/254 00:00:00 grep pyFoamPlotWa tcher.py

The PID of the plotter is the first number of the line with pyFoamPlotWatcher.py log ,

in this case: 22729 . Kill it by typing:
kill 22729
(or kill -9 22729 if the first attempt doesn’t work)

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 243

Find other installed pyFoam scripts

• Find out which file you are actually running by typing:

which pyFoamPlotWatcher.py
This should make you aware of a directory named:

$WM_THIRD_PARTY_DIR/PyFoam/bin
where you can find all the pyFoam scripts in the pyFoam distribution. NOTE that this
location was decided by myself, as I installed pyFoam separate from the OpenFOAM
installation!

• You can also type:

pyFoam[TAB]
To see the alternatives. Here [TAB] means: press the TAB key.

• Use the --help flag to get more information on each script.

• Read more at: http://openfoamwiki.net/index.php/Contrib_PyFoam , or in the

slides of the fourth OpenFOAM workshop:

http://www.openfoamworkshop.org/2009/4th_Workshop/0 _Feature_Presentations/OFW4_2009_Gschaider_PyFoam.p df

• pyFoam is OpenSource, so you can modify it according to your needs.

• At the same time as you dig into pyFoam, you will also learn how to do Python script
programming.

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 244

An alternative for modifying dictionaries

• As always, you can do things in different ways...

• See the chtMultiRegionFoam/multiRegionHeater for a changeDictionaryDict ,

which can be used together with changeDictionary to set up dictionaries.

• Search the Forum for changeDictionary

