
1

Solid and Fluid Mechanics

Patrik Andersson

CFD WITH OPENSOURCE SOFTWARE, ASSIGNMENT 3

Tutorial multiphaseInterFoam

FOR THE DAMBREAK4PHASE CASE

Author: Patrik Andersson

2

Introduction

Patrik Andersson

DESCRIPTION: MULTIPHASEINTERFOAM

”Incompressible multi-phase mixture with built in solution for the phase fractions with interface

compression for interface-capturing. Derived from transportModel it can be used in conjunction

with the incompressible turbulence models. Surface tension and contact-angle is handled for the

interface between each phase-pair.”

DAMBREAK4PHASE

Similar to damBreak but now with four phases: Water, air, oil and mercury. All phases are

intitially located behind a membrane which is removed at t=0 and the fluids collapse upon

each other and the obstacle. this creates a complicated mixture where the interaction between

the phases need to be interpolated and the contact angles calculated.

3

Getting started

Patrik Andersson

Copy the multiphaseInterFoam tutorial to the run directory (note that the placement of the

case might differ between versions).

OF17x
cp -r $FOAM_TUTORIALS/multiphase/multiphaseInterFoam/laminar/\
damBreak4phase $FOAM_RUN
cd $FOAM_RUN/damBreak4phase

The folder copied contains:

/0– alphair alphamercury alphaoil alphas alphawater p rgh U

/0.org– backup of original files listed above

/constant– g motionProperties transportProperties turbulenceProperties

subfolder: /polymesh– blockMeshDict boundary faces neighbour owner points

/system – controlDict decomposeParDict fvSchemes fvSolution setFieldsDict

4

Initial conditions

Patrik Andersson

In /0we find all the intial conditions for the different phases and a file called phases, which com-

bines all of the phases so that the can be easier shown at the same time when post-processing

in paraFoam. For example we can take a look at the reference phase air in alphaair.

leftWall
{

type alphaContactAngle;
thetaProperties
(

(water air) 90 0 0 0
(oil air) 90 0 0 0
(mercury air) 90 0 0 0
(water oil) 90 0 0 0
(water mercury) 90 0 0 0
(oil mercury) 90 0 0 0

);
value uniform 0;

}

5

Set contact angle

Patrik Andersson

n̂ denotes the normal to the interface at the wall as:

n̂ = nw cos(θeq)− nt sin(θeq) (1)

And θeq is the static contact angle set to 90 degrees.

nw the unit normal vector to the wall pointing towards the wall.

nt the unit vector tangential to the wall pointing towards the liquid.

By setting θeq = 90 the fluid will be we avoid using the surface tension force between the wall

and the fluid. If θeq would be less than 90 degrees, then that would indicate that the fluid wets

the wall.

6

Properties

Patrik Andersson

In /constant:

motionProperties: Motion of mesh set to staticFvMesh, since no movement.

transportProperties: the dynamic laminar viscosity, µ, the density ρ, reference phase, surface

tension coefficient, σ.

turbulenceProperties: Turbulent model set to laminar.

7

Solver setup

Patrik Andersson

In /system we find setFieldsDict we see the positioning of the phases.

In fvSchemes we set all schemes required to solve.

Moving on to fvSolution we have the solver setup with solver method specification.

8

multiphaseMixture.H

Patrik Andersson

Go to cd $FOAM_SOLVERS/multiphase/multiphaseInterFoam
Now, lets move on to the solver. We begin in phases.C and .H located within the multiphaseMix-

ture folder. Where one phase at the time is handled and ν and ρ is read.

From phases we go to multiphaseMixture.H. The code initially sets the selected transport-
model and then moves forward by defining interfacePairs for the mixture of phases. This can
bee seen in the Constructor and the Friend Operators section of the code.

// Constructors
interfacePair()
{}

interfacePair(const word& alpha1Name, const word& alpha2Name)
:

Pair<word>(alpha1Name, alpha2Name)
{}

interfacePair(const phase& alpha1, const phase& alpha2)
:

Pair<word>(alpha1.name(), alpha2.name())
{}

// Friend Operators

friend bool operator==
(

const interfacePair& a,
const interfacePair& b

)
{

return
(

((a.first() == b.first()) && (a.second() == b.second()))
|| ((a.first() == b.second()) && (a.second() == b.first()))
);

}
friend bool operator!=
(

const interfacePair& a,
const interfacePair& b

)
{

return (!(a == b));
}

};

Furthermore, the code defines terms such as those seen in table 1 on next slide.

Private data terms

refPhase The phase chosen as reference

rhoPhi The volumetric flux

sigmatable The stresses for the interface pair

deltaN Stabilisation for the normalisation of the interface normal

alphaTable Phase-fraction field table for multivariate discretization

from multivariateSurfaceInterpolationScheme

Member functions Returns the:

phases phases

U velocity

phi, rhophi volumetric flux

rho mixture density

mu dynamic laminar viscosity

muf face-interpolated dynamic laminar viscosity

nu kinematic laminar viscosity

nuf face-interpolated kinematic laminar viscosity

nearInterface Indicator of the proximity of the interface-field, values are 1 near and 0 away from the interface

solve Solve for the mixture phase-fractions

correct Correct the mixture properties

read Read base transportProperties dictionary

Table 1: multiphaseMixture.H

Now lets go to the .C file

11

multiphaseMixture.C

Patrik Andersson

To view type:

gedit $FOAM_SOLVERS/multiphase/multiphaseInterFoam/\
multiphaseMixture/multiphaseMixture.C+
In the solve part of multiphaseMixture.C we have the iteration loops for ρ, µ, µf .There are also

loops for ν, which is µ
ρ
, and one loop for the faceinterpolated νf . The loop for the surfacetension-

force (refered to as stf in the code) is a bit more extensive, here σ for the interfacepair and an

interpolation is performed between the two phases.

The surface tension force is defined as:

Fs = σ

(

∇ ·

(

∇α

|∇α|

))

(∇α) (2)

Where

∇α = n the vector normal to the interface

σ = surface tension coefficient

In the code this is represented by:

stf += dimensionedScalar("sigma", dimSigma_, sigma())

fvc::interpolate(K(alpha1, alpha2))
(

fvc::interpolate(alpha2)*fvc::snGrad(alpha1)

- fvc::interpolate(alpha1)*fvc::snGrad(alpha2)
);

Moving on we have the piso-loops for alpha in the code (see table 2 below). Compared to the

two-phase case for InterFoam we now have a different setup with, for example, four times the

halfing of the time-step.

piso-loops fvSolution settings Description

nAlphaSubCycles 4 Number of subsycles for αn for each timestep

nAlphaCorr 4 Number of correction for α, to improve quality of

solution via fixed point iteration

cycleAlpha yes Cycling of alpha turned on

cAlpha 2 Compression of the interface, above one equals to enhanced compression

Table 2: Piso-loops in multiphaseMixture.C

13

Contact Angle

Patrik Andersson

A large and interesting section in the solve part of multiphaseMixture.C is the correction for

the boundary condition, on the unit normal nHat on walls, in order to produce a correct contact

angle here. The dynamic contact angle is calculated by using the component of the velocity U

on the direction of the interface, parallell to the wall. Before we go in to this we need to take a

quick look at the definitions of the angles in alphaContactAngleFvPatchScalarField.C.

class interfaceThetaProps

theta0 θ0 (θC) Equilibrium contact angle

uTheta uθ Dynamic contact angle velocity scale

thetaA θA Limiting advancing contact angle

thetaR θR Limiting receeding contact angle

Table 3: Angles

Figure 1: Contact angle and interface energies

In figure 1 above, we see the contact angle of a droplet which will represent our phase. γSL
denotes the solid liquid energy, γSG the solid vapor energy and γLG the liquid vapor energy,

i.e. the surface tension. This is governed by youngs equation (3) which will be satisfied at

equilibrium.

0 = γSG − γSL − γLG cos(θC) (3)

Where θC is dependent on the highest (advancing) contact angle θA and the lowest (receding)

contact angle θR, written as:

θC = arccos

(

rA cos(θA) + rR cos(θR)

rA + rR

)

(4)

where

rA = 3

√

sin3(θA)

2− 3 cos(θA) + cos(θA)
(5)

rR = 3

√

sin3(θR)

2− 3 cos(θR) + cos(θR)
(6)

θA is the contact angle when increasing the volume of, for example, the droplet. θR is the contact

angle when decreasing the volume. In other words, when there is a relative motion of the

droplet over a solid surface or another phase-interface, a different angle than the equilibrium

contact angle will appear. It depends upon the direction of the previous motion, that is, if it was

a advancing or receeding motion of the surface/interface (see figure 2 for explanation).

Figure 2: Schematic of equilibrium contact angle: θ (a) stationary liquid, (b)

liquid flows upward, (c) liquid flows downward.

The data is grouped into the member function thetaProps for the interface-pairs.

16

Back to multiphaseMixture.C

Patrik Andersson

Lets go back to multiphaseMixture.C and have a look at the correction of the contact angle

Then finally, corrects the angle θ by

θ = (θA − θR) ∗ tanh

(

uwall

uθ

)

(7)

This new angle is then used to reset nHatPatch (the direction of the contact interface) so that

it corresponds to the contact angle.

Finally, we are ready for the alpha-equation which will be used when calculating the new

volumetric flux. The equation reads:

dα

dt
+mvconvection− > fvmdiv(φ, α) (8)

Where fvmdiv is the divergence of the flux and the α-field. The flux calculated from the alpha-

equation is then calculated and later used for rhophi .

17

UEqn, PEqn and multiphaseInterFoam

Patrik Andersson

The multiphaseInterFoam.C code is in it self relatively short. Since the major solving is done

in previously discussed multiphaseMixture section.

the U-equation:

(

d

dt
(ρ, U) +∇ · (ρφmix, U)−∇2(µEff , U)−∇U · ∇µEff

)

implicit

− (∇ · (µEff))explicit (9)

where:

µEff = µf + interpolate(ρ*νt)

µf = mixture.muf ()

νt = turbulent viscosity

UEqn = (Fs − g ∗ ∇ρexplicit −∇Prgh,explicit) ∗ cellfacevectors (10)

where:

Fs = the surface-tension-force derived from the mixture

∇ = facenormal-gradient

18

Summarizing the solution steps

Patrik Andersson

Onno Ubbink ”Numerical prediction of two fluid systems with sharp interfaces”.

The solution sequence is as follows:

1. Initialise all the variables.

2. Calculate the Courant number and adjust the time step if necessary.

3. Solve the equation by using the old time level’s volumetric fluxes.

4. Use the new values together with the constitutive relations to obtain an estimate for the new

viscosity, density and the face densities.

5. Use the above values to do a momentum prediction and continue with the PISO algorithm.

6. If the final time has not yet been reached advance to the next time level and return to step 2.

19

Running the case

Patrik Andersson

Finally time to run the case! Go to the case-folder in the run directory and execute blockMesh.

When done, write setFields. setFields now sets the specified α-values for the different phases

in their respective boxes as previously described.

Now it is time to initialize the solver, type: multiphaseInterFoam | tee log

20

Post-processing

Patrik Andersson

Now we can view the results by typing paraFoam. The best way to visualize it is my simple

choosing the alphas parameter to visualize the 4 different phases.

Figure 3: Setup in paraFoam

