CFD witH OPENSOURCE SOFTWARE, ASSIGNMENT 3

Tutorial perforatedPlateBoundary

Developed for OpenFOAM-1.7.x

Peer reviewed by:
DANIEL GRONBERG
JELENA ANDRIC

Author:
Mohammad IRANNEZHAD

November 2, 2010

1 Introduction

This tutorial describes how to program a new boundary condition that takes care of a perforated plate
as a boundary. It also includes the instructions on how to declare it in the boundary conditions list.
The pitzDaily test case in 3d is used to validate the implementation of the new boundary condition.
A perforated plate is a plate with several holes in it which is usually used at the flow inlet. Figure
1.1 shows a perforated plate with a set of swirler vanes around it used as the inlet in a typical low
swirl burner. The perforated plate splits the inlet flow into several jets. The goal is to set up a new
kind of boundary condition that can handle such inlet conditions where some part of the inlet is
wall and some part of it is an inlet.

Figure 1: Perforated plate.

2 Implementation alternatives

There are several strategies that can be considered when setting up such a boundary condition
depending on how you want to treat the wall. In general, OpenFOAM considers two kinds of
boundary conditions:

e Boundary conditions that have some geometrical constraints applied to it. These include
empty, symmetryPlane, etc.

e Boundary conditions without any physical constraints that are all of type patch.

A wall does not have any geometrical constraint and can be simply treated as a patch with zero
pressure gradient. However, OpenFOAM recognizes between a simple patch and a wall type patch.
The only reason to separate wall type from patch type is to be able to apply turbulent wall treatment
on it, e.g. wall functions.

The first strategy is to consider the wall part of the perforated plate as a normal patch type but
specify different values to the hole/wall parts of the plate. It is important to explicitly specify zero
pressure gradient condition to the wall part.

The second strategy is to split the hole/wall part of the plate into real patch type and wall type
boundaries. This necessitate the manipulation of the mesh.

Detailed implementations and pros and cons of the two alternatives will be discussed.

3 Alternative 1: as boundary condition

3.1 Getting started

Start as usual by finding some boundary condition that does almost what you want and copy it
to the working directory and change the name of all the files and directories. Here this boundary
condition is used with by simpleFoam solver as a static library.

cd $FOAM_USER_APP

cp -r $FOAM_SOLVERS/incompressible/simpleFoam .
mv simpleFoam simpleFoamPP

cd simpleFoamPP

mv simpleFoam.C simpleFoamPP.C

wclean

cp $FOAM_SRC/finiteVolume/fields/fvPatchFields/derived/oscillatingFixedValue/*.* .
mv oscillatingFixedValueFvPatchField.H perforatedPlateFixedValueFvPatchField.H
mv oscillatingFixedValueFvPatchField.C perforatedPlateFixedValueFvPatchField.C
mv oscillatingFixedValueFvPatchFields.H perforatedPlateFixedValueFvPatchFields.H
mv oscillatingFixedValueFvPatchField.C perforatedPlateFixedValueFvPatchFields.C

mv oscillatingFixedValueFvPatchFieldFwd.H perforatedPlateFixedValueFvPatchFieldFwd.H

Then using any text editor we change all the occurances of oscillating to perforatedPlate in all
the files whose names start with perforatedPlate.

3.2 Modifications
Start with perforatedPlateFixedValueFvPatchField.H file and do the following modifications:

e Replace the private data with the following private data,

//- Value of the field at the holes
Field<Type> PPHolesValue_;

//- Value of the field at the wall

Field<Type> PPWallValue_;

//- Centers of the holes
List<vector> PPHolesCenters_;

//- Radii of the holes
List<scalar> PPHolesRadii_;

//Face centers
Field<vector> faceCenters_;

//- Current time index
label curTimeIndex_;
e Comment or delete the declaration of the currentScale() member function.
// scalar currentScale() const;

e Replace the private member functions with the following

//-
const Field<Type>& PPHolesValue() const
{
return PPHolesValue_;
}
//-
Field<Type>& PPHolesValue()
{
return PPHolesValue_;
}
//-
const Field<Type>& PPWallValue() const
{
return PPWallValue_;
}
//-
Field<Type>& PPWallValue()
{
return PPWallValue_;
}
//-
List<vector> PPHolesCenters() const
{
return PPHolesCenters_;
}
List<vector>& PPHolesCenters()
{
return PPHolesCenters_;
}
//-
List<scalar> PPHolesRadii() const
{

return PPHolesRadii_;

}
List<scalar>& PPHolesRadii()

{
return PPHolesRadii_;
}
//-
Field<vector> faceCenters() const
{
return faceCenters_;
}
Field<vector>& faceCenters()
{
return faceCenters_;
}

In the file perforatedPlateFixed ValueFvPatchField.C do the following changes:
e Comment or delete the definition of the currentScale() function.

e Modify the constructors as follows.

template<class Type>
perforatedPlateFixedValueFvPatchField<Type>: :perforatedPlateFixedValueFvPatchField

(
const fvPatch& p,
const DimensionedField<Type, volMesh>& iF,
const dictionary& dict
)
fixedValueFvPatchField<Type>(p, iF),
PPHolesValue_("PPHolesValue", dict, p.size()),
PPWallValue_("PPWallValue", dict, p.size()),
PPHolesCenters_(dict.lookup("PPHolesCenters")),
PPHolesRadii_(dict.lookup("PPHolesRadii")),
faceCenters_(p.Cf())
{
if (dict.found("value"))
{
fixedValueFvPatchField<Type>: :operator==
(
Field<Type>("value", dict, p.size())
)3
}
else
{
fvPatchField<Type>: :operator==(PPHolesValue_);
Field<Type>& patchfield = x*this;
forAll(p.C£(),i) //go through all the cells in the current patch
{

bool isHole=false;
forAll1(PPHolesRadii_,j)//go through all the holes
{

if (mag(p.Cf () [i]-PPHolesCenters_[j])<=PPHolesRadii_[j]){isHole=true;}//find if the face is in
}
if (!isHole){patchfield.data() [i]= PPWallValue_[i];}
}
}

e Modify all the constructors according to the new private data.

e Modify rmap and autoMap functions as follows.

template<class Type>
void perforatedPlateFixedValueFvPatchField<Type>::autoMap

(
const fvPatchFieldMapper& m

)

{
fixedValueFvPatchField<Type>: :autoMap(m);
PPHolesValue_.autoMap(m) ;
PPWallValue_.autoMap(m);
faceCenters_.autoMap(m) ;

}

template<class Type>
void perforatedPlateFixedValueFvPatchField<Type>: :rmap

(
const fvPatchField<Type>& ptf,
const labellList& addr

)

{
fixedValueFvPatchField<Type>: :rmap(ptf, addr);
const perforatedPlateFixedValueFvPatchField<Type>& tiptf =

refCast<const perforatedPlateFixedValueFvPatchField<Type> >(ptf);

PPHolesValue_.rmap(tiptf.PPHolesValue_, addr);
PPWallValue_.rmap(tiptf.PPWallValue_, addr);
faceCenters_.rmap(tiptf.faceCenters_, addr);

}

e Modify the updateCoeffs() member function according to

template<class Type>
void perforatedPlateFixedValueFvPatchField<Type>: :updateCoeffs()
{
if (this->updated())
{

Info<<"updated"<<endl;
return;

}

if (curTimeIndex_ != this->db().time().timeIndex())

Field<Type>& patchfield = *this;
patchfield = PPHolesValue_;

forAll(this->faceCenters(),i)//go through all the faces of the current patch
{

bool isHole=false;
forAll1(PPHolesRadii_,j)//go through all the holes

{
if (mag(this->faceCenters() [i]-PPHolesCenters_[j])<=PPHolesRadii_[j]){isHole=true;}

}
if (!isHole){patchfield.data() [i]= PPWallValue_[i];}

}

curTimeIndex_ = this->db().time() .timeIndex();

}

fixedValueFvPatchField<Type>: :updateCoeffs();
}

e Modify the write(os) function.

template<class Type>
void perforatedPlateFixedValueFvPatchField<Type>::write(Ostream& os) const
{
fixedValueFvPatchField<Type>: :write(os);
PPHolesValue_.writeEntry("PPHolesValue", os);
PPWallValue_.writeEntry("PPWallValue", os);
os.writeKeyword("PPHolesCenters")
<< PPHolesCenters_ << token::END_STATEMENT << nl;
os.writeKeyword("PPHolesRadii")
<< PPHolesRadii_ << token::END_STATEMENT << nl;

There are a couple of points about the above modifications:
e The private data faceCenter\ is initialized as the face centers of the current fuPatch object.

e The updateCoeffs() is a virtual function and is originally defined to take no input arguments.
It is therfore called with no arguments, thus in the definition of this function we have no
access to the face centers of the current fuPatch object. This is the reason behind having the
faceCenter() as a member function.

3.3 Compiling

To have this boundary condition as a static boundary you need to include it in the new simpleFoamPP
solver so the following line is added to the header of the simpleFoamPP.C

#include "perforatedPlateFixedValueFvPatchField.H"

And the Make/files is modified to assure including this new bounday condition, to change the
name of the executable and save it in the correct location. Then compile with wmake.

simpleFoamPP.C
perforatedPlateFixedValueFvPatchFields.C

EXE = $(FDAM_USER_APPBIN)/simpleFoamPP

3.4 Specify the boundary condition

The perforated plate is first declared in the blockMeshDict as either a patch or a wall and then
the new boundary condition is specified in the fields in 0/ directory as follows (example for velocity
field U):

{
type perforatedPlateFixedValue;
value uniform (0 0 0);
PPHolesValue uniform (10 0 0);
PPWallValue uniform (0 0 0);

PPHolesCenters ((-0.0206 0.008 0)(-0.0206 0.016 0)(-0.0206 0.022 0));
PPHolesRadii (0.004 0.002 0.002);

3.5 Pros And Cons
There are a number of advantages and disadvantages with this approach. Advantages are
e It is very easy and straight forward to do it.

e We are at the bottom of the class hierarchy of OpenFOAM and we can not possibly affect any
other class.

e It can be used for most of the real world problems where a perforated plate is used at the inlet
where flow is normal to the plate. This will be discussed more in disadvantages below.

Disadvantages are:

e For any new derived type of fuPatchFiled a new boundary condition should be set up. It
means that if you want an oscillating value on the boundary you should program perforated-
PlateOscillatingFized Value boundary condition.

e It is not possible (or very difficult if possible) to have different basic fuPatchFileds on wall and
hole parts of the perforated plate. For instance it is not possible to have zero Gradient for the
wall part and fized Value on the hole part.

e The whole perforated plate is set to the same type (patch or wall) so when it is needed to really
distinguish between a wall and a patch ,e.g using wall functions, it fails. This may happen
when the flow is tangential to the plate.

4 Alternative 2: Manipulation of the mesh

Separating the faces of the perforated plate boundary into two separated fuPatchFields can be done
in two ways

e Generate the mesh with one single patch for the whole perforated plate and then manipulate
the mesh by polyTopoChanger functions.

e Step into the mesh generating utility blockMesh and change the mesh topology directly there.

The second option is used and described in this document.

4.1 How the mesh is set up?

The blockMesh utility reads and uses a dictionary blockMeshDict to construct a polyMesh class
object which is then written to some files which are then read by the solvers. The mesh is saved as
the following files:

e points which contains a list of vectors showing the location of the vertices.

e faces which contains a list of lists where each list contains the index of wertices constructing
the face.

e owner which contains a list of labels which are the index of the owner cell of each face present
in faces. The size of this list is equal to the size of faces list.

e neighbor which contains a list of labels which are the index to the neighbor cell of the faces
present in faces. The size of this list is smaller than the size of faces as it only keeps the
neighbors of the internal faces. The neighbor to the boundary faces is set to —1 by default.
Therefore, the size of neighbor is equal to the number of internal faces.

e boundary which includes all the boundaries as their type, name, start face index in the faces
files and number of faces.

e zone files may also be present if some blocks are specified as zones.

The important fact here is that the faces file is set up in such a way that, first all the internal faces
are written and then the boundary patchFields are written as continuous blocks of faces in the faces
file. This means that any boundary name corresponds to a single continuous slice of the faces list,
it has one start face index and a size.

In order to split up a perforated plate into two patchFields we have to reorder the face list so that
all the faces which together build up the hole part of the plate constitute a continuous slice of the
face list, and the same rule applies for the faces building the wall part of the plate.

4.2 Getting started

The aim here is to modify the blockMesh utility so you should first copy blockMesh utility to your
working directory.

cd $FOAM_USER_APP

cp -r $FOAM_APP/utilities/mesh/generation/blockMesh .
mv blockMesh blockMeshPP

cd blockMeshPP

4.3 Modifications

The main function is in blockMeshApp.C file where the blockMeshDict file (or any possible
alternatives which is not the matter of concern here) is read as an input dictionary and then a
blockMesh class object is constructed which is named blocks.

Info<< nl << "Creating block mesh from\n "
<< meshDictIoPtr->objectPath() << nl << endl;

I0dictionary meshDict(meshDictIoPtr());
blockMesh blocks(meshDict);

Then this object is not changed at all until a polyMesh class object is made from it which is named
mesh as follows.

polyMesh mesh
(
I0object
(
regionName,
runTime.constant (),
runTime
),
xferCopy (blocks.points()), // could we re-use space?
blocks.cells(),
blocks.patches(),
patchNames,
patchTypes,
defaultFacesName,
defaultFacesType,
patchPhysicalTypes
)5

This polyMesh constructor uses a number of blocks properties to make the mesh:
e blocks.points()
e blocks.cells()
o blocks.patches()
It also uses some words and wordLists which are made earlier in the code from blocks object:

e patchNames

patchTypes

o defaultFacesName

defaultFacesType
e patchPhysicalTypes
Here is where these are defined in the code.

wordList patchNames = blocks.patchNames();

wordList patchTypes = blocks.patchTypes();

word defaultFacesName = "defaultFaces";

word defaultFacesType = emptyPolyPatch::typeName;
wordList patchPhysicalTypes = blocks.patchPhysicalTypes();

Remember that this is the location of the code that you should step in for changes and will be
mentioned later.

The rest of the code does not change the mesh and just sets up the zones if any specified, before
writing the mesh to the files discussed earlier. All these suggest that we should manipulate those
blocks object components that are used to construct the polyMesh in such a way that they match
the topology of interest (this simply means that the perforated plate should be split in a topologically
consistent way).

Let’s start with passing the information about the perforated plates to the mesh generator through
a dictionary. An obvious choice is to add it to the blockMeshDict dictionary. In this way you
should first set up a blockMeshDict dictionary assuming the perforated plate boundary is a normal
patch type and then add to the dictionary how to split it into a wall and a patch. The splitting
instructions is given under the keyword PPInfo to the utility. Following this keyword comes a list
of dictionaries, each describing one of the perforated plates in the geometry in terms of:

The name of the boundary condition to be considered as a perforated plate. Remember we
have already set this boundary as a patch type, this is the name of that patch and comes under
the keyword PPOldPatchName.

The name of the polyPatch you want to give to the wall type patch extracted from the perfo-
rated plate. This comes under the keyword PPWallPatchName.

e The name of the patch you want to give to the patch type patch extracted from the perforated
plate representing the holes. This comes under the keyword PPHolesPatchName.

A list of vectors representing the center of holes on the plate under the keyword PPHoles-
Centers.

A list of scalars representing the radii of the holes on the plate under the keyword PP-
HolesRadii.

This is an example of a blockMeshDict where a perforated plate with three holes is made. The
wall type patch representing the plate wall section is named PP1Wall and the holes part will be a
patch type patch named PP1Holes. Notice that the plate was first defined as a patch type PP1.

patches

(
patch PP1
(
(0 22 23 1)
);
);
PPInfo
(
{
// Name of new patch
PP0O1dPatchName PP1;
PPWallPatchName PP1Wall,;
PPHolesPatchName PP1Holes;

PPHolesCenters ((-0.0206 0.008 0)(-0.0206 0.016 0)(-0.0206 0.022 0));
PPHolesRadii (0.004 0.002 0.002);

)

Now you should step in the code in the location mentioned earlier (it is right before defining the
preservePatchNames which is followed by construction of the polyMesh mesh object), read the
perforated plate information and put them in appropriate lists. Add the following to the code:

// reading in the PP information from dictionary
PtrList<dictionary> patchSources(meshDict.lookup("PPInfo"));
// declaring some lists to keep the PPInfo for later use
List<word> PPOldPatchNames(patchSources.size());

10

List<word> PPWallPatchNames (patchSources.size());
List<word> PPHolesPatchNames (patchSources.size());
List< List<vector> > PPCenters(patchSources.size());
List< List<scalar> > PPRadii(patchSources.size());

// filling up the above lists with value read from dictionary

forAll(patchSources,iPP)

{
word PPOldPatchNametmp (patchSources[iPP].lookup("PPOldPatchName")) ;
PPOldPatchNames [1PP]=PP01dPatchNametmp;
word PPWallPatchNametmp (patchSources[iPP].lookup("PPWallPatchName"));
PPWallPatchNames [iPP]=PPWallPatchNametmp;
word PPHolesPatchNametmp (patchSources [iPP].lookup ("PPHolesPatchName")) ;
PPHolesPatchNames [iPP]=PPHolesPatchNametmp;
List<vector> PPCenterstmp(patchSources[iPP] .lookup("PPCenters"));
PPCenters [iPP]=PPCenterstmp;
List<scalar> PPRadiitmp(patchSources[iPP].lookup("PPRadii"));
PPRadii[iPP]=PPRadiitmp;

}

Every patch representing a perforated plate is split into two patches so the number of patches of
the final mesh would be the number of original patches plus the number of perforated plates. The
number of original patches is found from blocks.patches().size() and the number of perforated plates
is the size of the list followed by the PPInfo keyword, patchSources.size(). Use these to set up new
objects which will be filled with information needed to construct the final mesh. The code follows:

// declaring some lists which will contain the modified information about the blockMesh object
List< List<face> > oldPatches(blocks.patches());
List< List<face> > newPatches(oldPatches.size()+patchSources.size());
wordList newPatchNames(oldPatches.size()+patchSources.size());
wordList newPatchTypes(oldPatches.size()+patchSources.size());
wordList newPatchPhysicalTypes(oldPatches.size()+patchSources.size());

There are two functions needed to be defined before you can continue. You need the center of each

face on the perforated plate patch to be able to determine if it is located on a hole or on the wall of a

perforated plate. This information is not available from blockMesh.patches() so you need a function to

do it. This function can be copied from $FOAM) /src/OpenFOAM /meshes/primitiveMesh/primitiveMeshFaceCe
and then modified accordingly. Add this to the end of the code as the function definition:

vector faceCenterPP

(

const pointField& p,

const face& facePP

)

{
vector fCenter = vector::zero;
label nPoints = facePP.size();

// If the face is a triangle, do a direct calculation for efficiency
// and to avoid round-off error-related problems
if (nPoints == 3)
{
fCenter = (1.0/3.0)*(p[facePP[0]] + pl[facePP[1]] + pl[facePP[2]]);
3

11

else

vector sumN = vector::zero;
scalar sumA = 0.0;
vector sumAc = vector::zero;

point fCent = p[facePP[0]];
for (label pi = 1; pi < nPoints; pi++)

{
fCent += pl[facePP[pill;
}
fCent /= nPoints;
for (label pi = 0; pi < nPoints; pi++)
{

const point& nextPoint = p[facePP[(pi + 1) % nPoints]];

vector ¢ = p[facePP[pil]] + nextPoint + fCent;
vector n = (nextPoint - p[facePP[pil])~(fCent - pl[facePP[pill);
scalar a = mag(n);

sumN += n;
sumA += a;
sumAc += ax*c;

fCenter = (1.0/3.0)*sumAc/(sumA + VSMALL);
}

return fCenter;

}
You also need to declare it before you can use it so add the following to the beginning of the file:

// function to calculate a face center
vector faceCenterPP
(
const pointField& p,
const face& facePP

)

The next function is one that can recognize if a face is in a hole or on the wall of a perforated plate.
Add this to the beginning as the declaration

// function to evaluate if a given face is in a hole or the wall part of a perforatedPlate
bool isHole
(
const vector& faceCenterPP,
const List<vector>& PPcenters ,
const List<scalar>& PPradii

);
And add the function definition at the end:

bool isHole

12

const vector& faceCenterPP,
const List<vector>& PPcenters ,
const List<scalar>& PPradii
)
{
bool ishole=false;
forAll (PPradii,iHole)
{
if (mag(faceCenterPP-PPcenters[iHole])<=PPradii[iHole])
{
ishole=true;
¥
}

return ishole;

}

Now go back to the point you were in the code and add the following. To understand what this does
just follow the comments in the code.

if (patchSources.size()) //if any perforated plate exists
{

label PPWallFaceIndex=0;

label PPHolesFaceIndex=0;

label totPatchIndex=0;

forAll(oldPatches, patchI)// go through all original patches
//(patches defined earlier considering the palte as a single patch)

{
bool isPP = false;
label PPno(-1);
forAll1(PPOl1dPatchNames,ii)// see if the original patch name exists in the list of perforat
{
if (patchNames [patchI]==PP0l1dPatchNames[ii])
{
isPP = true;
PPno = ii;
}
}

if(1isPP)// if the current original patch is not a perforated plate just copy it as a member of mo
{
newPatches [totPatchIndex] = oldPatches[patchI];
newPatchNames [totPatchIndex] = patchNames [patchI];
newPatchTypes [totPatchIndex] = patchTypes[patchI];
newPatchPhysicalTypes[totPatchIndex] = patchPhysicalTypes [patchI];

totPatchIndex++;//increase the number of patches by one

}

else//if the current original path is a perforated plate

{
// define two new patches one a wall type and the other a patch type

newPatchNames [totPatchIndex] = PPWallPatchNames[PPno];

13

newPatchTypes [totPatchIndex] = "wall";
newPatchPhysicalTypes[totPatchIndex] = patchPhysicalTypes[patchI];

totPatchIndex++;

newPatchNames [totPatchIndex] = PPHolesPatchNames[PPno];
newPatchTypes [totPatchIndex] = "patch";
newPatchPhysicalTypes[totPatchIndex] = patchPhysicalTypes [patchI];

totPatchIndex++;

label PPWallFaceCount=0;
label PPHolesFaceCount=0;
forAll(oldPatches[patchI],ii)// go through all of the faces in the current original pa
// which is recognized as a perforated plate
{
// count the number of faces in these two new patches by checking the center of every face
// to find if it is in a hole on the perforated plate or not use isHole function
if (isHole(faceCenterPP(blocks.points() ,oldPatches[patchI] [ii]) ,PPCenters[PPno] ,PPRadii[PPno]))
{
PPHolesFaceCount++;
¥
else
{
PPWallFaceCount++;
}
X
//set up two lists resembling the new patches that should be made from PP
//the size of these two lists are know from counting the faces on holes and walls
List<face> PPWall(PPWallFaceCount);
List<face> PPHoles(PPHolesFaceCount) ;
label PPWallFaceIndex=0;
label PPHolesFacelIndex=0;
// £ill up these face lists from the original patch
forAll(oldPatches[patchI],ii)
{
if (isHole(faceCenterPP(blocks.points() ,oldPatches[patchI] [ii]) ,PPCenters[PPno] ,PPRadii[PPno]))
{
PPHoles [PPHolesFaceIndex]=oldPatches [patchI] [ii];
PPHolesFacelIndex++;
}
else
{
PPWall [PPWallFaceIndex]=o0ldPatches[patchI] [ii];
PPWallFacelIndex++;
}

}
newPatches[totPatchIndex—2]

PPWall;//add the wall face list of the perforated plate
//as a new patch to the new patch list we are set
PPHoles;//add the patch face list to the new patch list

newPatches[totPatchIndex-1]
}
}

At this point you have enough information to construct the mesh. Add the following to the code
and follow the comments.

14

preservePatchTypes
(
runTime,
runTime.constant (),
polyMeshDir,
patchNames,
patchTypes,
defaultFacesName,
defaultFacesType,
patchPhysicalTypes
)3

// construct the polymesh type object mesh from this modified blockMesh object instead of the orig
// the original construction is commented below
polyMesh mesh
(
I0object
(
regionName,
runTime.constant (),
runTime
),
xferCopy(blocks.points()), // could we re-use space?
blocks.cells(),
newPatches,
newPatchNames,
newPatchTypes,
defaultFacesName,
defaultFacesType,
newPatchPhysicalTypes

/*polyMesh mesh
(
IOobject
(
regionName,
runTime.constant(),
runTime
),
xferCopy(blocks.points()), // could we re-use space?
blocks.cells(),
blocks.patches(),
patchNames,
patchTypes,
defaultFacesName,
defaultFacesType,
patchPhysicalTypes
)sx/

4.4 compiling

Before you compile this new application modify the Make/files file and change the name of the
executable and then simply compile.

15

EXE = $(FOAM_USER_APPBIN)/blockMeshPP

5 Examples

5.1 as boundary

You can use the pitzDaily tutorial as a validation case but it is more clear if you change it to a three
dimensional case. Start by copying the tutorial to your run directory:

run

cp -r $FOAM_TUTORIALS/incompressible/simpleFoam/pitzDaily .
mv pitzDaily pitzDaily3d_asBoundary

cd pitzDaily3d_asBoundary

Now open the blockMeshDict file and make the mesh 3d. Just change the z bounds from (-0.5,0.5)
to (-20 ,20) in vertices and set the number of cells in z direction to 20 in all the blocks. You should
also merge the front AndBack with lowerwall patch into a single patch. The inflow boundary is
our target to be changed to a perforated plate so it can be defined either as a wall or a patch so you
can keep it as it is.

Then open the 0/U file and change the inlet patch according to:

inlet

{
type perforatedPlateFixedValue;
value uniform (10 0 0);
PPHolesValue uniform (10 0 0);
PPWallValue uniform (0 0 0);

PPHolesCenters ((-0.0206 0.017 -0.015) (-0.0206 0.017 0) (-0.0206 0.017 0.015));
PPHolesRadii (0.003 0.007 0.003);
}

This will set a wuniform velocity of 10 in x direction on the holes and zero on the wall of the
perforated plate. The plate will have three holes as specified above. Note that all the other files in
the 0/ directory should be changed as the way they are now will give incorrect results. Some are
even physically wrong, for example the k has a value on the wall now. However for the matter of
validating the boundary condition these can be neglected and the above change is enough. Do not
forget to delete the frontAndBack patch from all the files in 0/ directory. You can now run the
case and have a look at the U velocity at the inlet boundary, figure 1.2.

blockMesh
simpleFoamPP

5.2 Modified blockMesh
Start by copying the tutorial to your run directory:

run

cp -r $FOAM_TUTORIALS/incompressible/simpleFoam/pitzDaily .
mv pitzDaily pitzDaily3d_blockMeshPP

cd pitzDaily3d_blockMeshPP

Then open the constant/polyMesh/blockMeshDict, change to 3d as you did before and merge
the front AndBack with lowerWall. Then change the inlet patch to

16

U Magnitud

0.11507
10

£7.5

-5

2.5

0

Figure 2: Velocity magnitude at the inlet showing the perforated plate alternative 1

patch PP1
(
(0 22 23 1)
(1 23 24 2)
(2 24 25 3)
)

and add the following to the end of the file:

PPInfo
(
{
PPOldPatchName PP1;
PPWallPatchName PP1Wall,;
PPHolesPatchName PP1Holes;
PPCenters ((-0.0206 0.017 -0.015) (-0.0206 0.017 0) (-0.0206 0.017 0.015));
PPRadii (0.003 0.007 0.003);
}

)

Now run blockMeshPP application and have a look at /constant/polymesh/boundary, the fol-
lowing patches are present now:

5

(
PP1wWall

{
type wall;

17

nFaces 522;

startFace 715675;
}
PP1Holes
{
type patch;
nFaces 78;
startFace 716197,
}
outlet
{
type patch;
nFaces 1140;
startFace 716275;
}
upperWall
{
type wall;
nFaces 4460;
startFace 717415;
}
lowerWall
{
type wall;
nFaces 29450;
startFace 721875;
}

)

Now go to the 0/ directory and specify your boundary conditions. Remember to delete front And-
Back in all the files. An example for 0/U would be:

boundaryField
{
PP1Holes
{
type fixedValue;
value uniform (10 0 0);
¥
PP1Wall
{
type fixedValue;
value uniform (0 O 0);
3
outlet
{
type zeroGradient;
X
upperWall
{

18

U Magnitud
ED
}7.5

-5

2.5

0

Figure 3: Velocity magnitude at the inlet showing the perforated plate alternative 2

type fixedValue;
value uniform (0 0 0);
}
lowerWall
{
type fixedValue;
value uniform (0 0 0);
}

}

Then run the original simpleFoam application. Figure 1.3 shows the results which are identical to
the previous implementation.

blockMeshPP
simpleFoam

19

