
Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 1

Tutorial Vigor Wave Energy Converter

Mattias Olander

• In this Tutorial a mesh motion class for simulating the Vigor Wave Energy Con-

verter will be implemented for OF-1.6.x.

• How to implement the boundary condition timeVaryingUniformFixedValue
is also explained.

• In the Vigor Wave Energy Converter a rubber hose with water and air is used to

harvest energy created by water waves.

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 2

Creating the new class

Mattias Olander

• Copy the dynamicInkJetFvMesh class to the run directory and rename it.

>> cp -r $FOAM_SRC/dynamicFvMesh/dynamicInkJetFvMesh/ \
$WM_PROJECT_USER_DIR/run/dynamicVigorWaveFvMesh
>> cd $WM_PROJECT_USER_DIR/run/dynamicVigorWaveFvMesh
>> sed s/dynamicInkJetFvMesh/dynamicVigorWaveFvMesh/g \
<dynamicInkJetFvMesh.C >dynamicVigorWaveFvMesh.C
>> sed s/dynamicInkJetFvMesh/dynamicVigorWaveFvMesh/g \
<dynamicInkJetFvMesh.H >dynamicVigorWaveFvMesh.H
>> rm dynamicInkJetFvMesh.*

• Also copy the Make directory

>> cp -r $FOAM_SRC/dynamicFvMesh/Make \
$WM_PROJECT_USER_DIR/run/dynamicVigorWaveFvMesh

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 3

Creating the new class

Mattias Olander

• Update the ”files” file to the following:

dynamicVigorWaveFvMesh.C

LIB=$(FOAM_USER_LIBBIN)/libdynamicVigowWaveFvMesh

• Add this to the ”option” file:

-I$(LIB_SRC)/dynamicFvMesh/lnInclude

• Compile it to make sure that everything has been done correctly.

>> cd $WM_PROJECT_USER_DIR/run/dynamicVigorWaveFvMesh
>> wmake libso

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 4

Creating the new class

Mattias Olander

• In the dynamicVigorWaveFvMesh.H file change ”frequency” to ”waveLength”

and ”refPlaneX” to ”periodTime”.

• Do the same in the dynamicVigorWaveFvMesh.C file.

• Also modify the bool function under ”Member Funcions” to this:

pointField newPoints = stationaryPoints_;
pointField toZero = stationaryPoints_;

forAll(newPoints,i)
{

toZero[i][0]=toZero[i][0]-stationaryPoints_[1][0];

newPoints[i][1]=stationaryPoints_[i][1]+tanh(toZero[i][0]/4)*amplitude_*
sin(2*mathematicalConstant::pi*toZero[i][0]/waveLength_+
2*mathematicalConstant::pi*time().value()/periodTime_);

}

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 5

Creating the new class

Mattias Olander

• So, instead of a newPointsreplace function, a for loop steps through the do-

main of the mesh and updates it according to the sinus equation below:

y = tanh(x/4) ∗ Asin(2πx/λ + 2πt/T) (1)

• A = amplitude, λ = wavelength and T = ”the time for one complete oscillation”.

• The tanh function is there to ensure that the fixed boundary condition of the left

wall is enforced.

• The toZero field is used to translate the mesh to the origin.

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 6

Creating the new class

Mattias Olander

• Copy the sloshingTank2D tutorial case.

>> cp -r $FOAM_TUTORIALS/multiphase/interDyMFoam/ras/sloshingTank2D \
$WM_PROJECT_USER_DIR/run/VigorWave
>> cd $WM_PROJECT_USER_DIR/run/VigorWave

• First, the blockMeshDict file is changed to produce a thin rectangular domain:

convertToMeters 10;
vertices
(

(0 0.06 0)
(0 0 0)
(1.5 0 0)
(1.5 0.06 0)
(0 0.06 0.01)
(0 0 0.01)
(1.5 0 0.01)
(1.5 0.06 0.01)

);

blocks
(

hex (0 1 2 3 4 5 6 7) (4 100 1) simpleGrading (1 1 1)
);
edges
(
);
patches
(

wall movingWall
(

(0 4 7 3)
(1 2 6 5)

)
patch inlet
(

(3 7 6 2)
)
patch outlet
(

(1 5 4 0)
)
empty frontAndBack
(

(0 3 2 1)
(4 5 6 7)

)
);
mergePatchPairs
(
);

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 8

Creating the new class

Mattias Olander

• Create the mesh and then check it.

>> blockMesh
>> checkMesh

• If ok, continue with the boundary conditions, starting with U:

movingWall
{

type movingWallVelocity;
value uniform (0 0 0);

}
inlet
{

type fixedValue;
value uniform (-10 0 0);

}
outlet
{

type pressureInletOutletVelocity;
value uniform (0 0 0);

}
frontAndBack
{

type empty;
}

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 9

Creating the new class

Mattias Olander

• The boundary conditions for p is also changed:

movingWall
{

type buoyantPressure;
value uniform 0;

}
inlet
{

type zeroGradient;
}
outlet
{

type totalPressure;
p0 uniform 0;
U U;
phi phi;
rho rho;
psi none;
gamma 1;
value uniform 0;

}
frontAndBack
{

type empty;
}

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 10

Creating the new class

Mattias Olander

• To simulate a unsteady flow of water, the timeVaryingUniformFixedValue
boundary condition will be used for alpha.

• As indata it needs a file that holds information about which value alpha is going

to have at a specific timestep.

• A outOfBounds string need to be specified, which decides what to do when the

simulaton has passed the scope of the created timestep file. It can either be

error, warn, clamp or repeat.

• For example, clamp will just continue with the last given value for the rest of the

timesteps and repeat will just loop the values specified.

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 11

Creating the new class

Mattias Olander

• A new file named ”timesteps” is created in the main directory of the case and

inside it the values of alpha at timesteps is specified.

(
(0.0 1)
(0.5 0)
)

• This means that alpha equals 1 from timestep 0.0 to timestep 0.5 where it changes

to 0. As repeat will be used for outOfBounds, no more than this need to be

specified.

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 12

Creating the new class

Mattias Olander

• The new boundary conditions for alpha is shown below:

movingWall
{

type zeroGradient;
}
inlet
{

type timeVaryingUniformFixedValue;
fileName "timesteps";
outOfBounds repeat;

}
outlet
{

type inletOutlet;
inletValue uniform 0;
value uniform 0;

}
frontAndBack
{

type empty;
}

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 13

Creating the new class

Mattias Olander

• In the constant directory, the dynamicMeshDict need to call the new class

dynamicVigorWaveFvMesh and the amplitude, the waveLength and the periodTime
of the wave need to be specified:

dynamicFvMeshLibs ("libdynamicVigorWaveFvMesh.so");

dynamicFvMesh dynamicVigorWaveFvMesh;

motionSolverLibs ("libfvMotionSolvers.so");

dynamicVigorWaveFvMeshCoeffs
{
amplitude 1;
waveLength 8;
periodTime 1;
}

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 14

Creating the new class

Mattias Olander

• In the constant directory the g file need to be altered so the gravitation is in

the negative y-direction instead of the negative z-direction.

• The coefficients of water and air is already specified in transportProperties,
so nothing need to be changed.

• In the controlDict file in the system directory, change the endtime value to 10,

the deltaT to 0.05 and writeCompression from compressed to uncompressed.

• The functions formula located after maxDelta can be deleted in the file as its of

no interest to write out probes and wallPressures at this point.

• Run the case with interDyMFoam.

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 15

Finished!

Mattias Olander

THANK YOU!

