
Chalmers University of Technology

CFD with OpenSource software, assignment 3

Tutorial: Mesh motion class of the
Vigor Wave Energy Converter

Developed for OpenFOAM-1.6.x

Author:
Mattias Olander

October 29, 2010

Chapter 1

Tutorial Vigor Wave Energy
Converter

1.1 Introduction

In this Tutorial a mesh motion class for simulating the movement of the rubber hose in the Vigor
Wave Energy Converter will be implemented.

This will be done by editing the dynamicIncJetFvMesh class to perform the desired mesh move-
ment resembling a rubber hose riding on a water wave, which can be seen in figure 1.1. This involves
using a for loop to generate a sinus function that moves the nodes of a basic rectangular mesh
in a way that simulates a traveling wave. It is considered that the rubber hose is fixed at one
end. Also, the edited dynamicInkJetFvmesh will be used together with the interDyMFoam solver
to show how movement of the waves moves water inside the rubber hose. This includes informa-
tion on how to set up a case from an already excisting case and how to implement the boundary
condition timeVaryingUniformFixedValue, which pumps water and air into the rubber hose. For
those who seek more information about the Vigor Wave Energy Converter can download this pdf:
http://www.tfd.chalmers.se/~hani/pdf_files/VigorWaveEnergyConverter.pdf

Figure 1.1: The principle of the Vigor Wave Energy Converter; water and air have been inserted in
such proportions that water columns are created which produces a pressure difference

1

1.2. CREATING THE NEW CLASSCHAPTER 1. TUTORIAL VIGOR WAVE ENERGY CONVERTER

1.2 Creating the new class

1.2.1 Copying the dynamicInkJetFvMesh class

First the dynamicInkJetFvMesh class is copied to the run directory and renamed to dynamicVigorWaveFvMesh.
Every word corresponding to dynamincInkJetFvMesh has to be changed to dynamicVigorWaveFvMesh
which is done using the ”sed” command. To be able to compile the class, a Make directory has to
be copied from the dynamicFvMesh directory.

>> cp -r $FOAM_SRC/dynamicFvMesh/dynamicInkJetFvMesh/ \

$WM_PROJECT_USER_DIR/run/dynamicVigorWaveFvMesh

>> cd $WM_PROJECT_USER_DIR/run/dynamicVigorWaveFvMesh

>> sed s/dynamicInkJetFvMesh/dynamicVigorWaveFvMesh/g \

<dynamicInkJetFvMesh.C >dynamicVigorWaveFvMesh.C

>> sed s/dynamicInkJetFvMesh/dynamicVigorWaveFvMesh/g \

<dynamicInkJetFvMesh.H >dynamicVigorWaveFvMesh.H

>> rm dynamicInkJetFvMesh.*

>> cp -r $FOAM_SRC/dynamicFvMesh/Make $WM_PROJECT_USER_DIR/run/dynamicVigorWaveFvMesh

The Make directory contains two files, ”files” and ”options” that need to be edited as stated
below.

The file ”files” is modified to only include the two lines displayed in Box 1 so just the dynamicVigorWaveFvMesh
class will be compiled:

dynamicVigorWaveFvMesh.C

LIB=$(FOAM_USER_LIBBIN)/libdynamicVigorWaveFvMesh

Box 1: Code of the files file

In the file ”options” the line below is added to include the files from the original library:

-I$(LIB_SRC)/dynamicFvMesh/lnInclude

Box 2: To be included in the options file

The ”option” file should now look like this:

EXE_INC = \

-I$(LIB_SRC)/triSurface/lnInclude \

-I$(LIB_SRC)/meshTools/lnInclude \

-I$(LIB_SRC)/dynamicMesh/lnInclude \

-I$(LIB_SRC)/finiteVolume/lnInclude \

-I$(LIB_SRC)/dynamicFvMesh/lnInclude

LIB_LIBS = \

-ltriSurface \

-lmeshTools \

-ldynamicMesh \

-lfiniteVolume

Box 3: The code of the option file

The class can now be compiled to make sure that everything has been done correctly.

2

1.2. CREATING THE NEW CLASSCHAPTER 1. TUTORIAL VIGOR WAVE ENERGY CONVERTER

>> cd $WM_PROJECT_USER_DIR/run/dynamicVigorWaveFvMesh

>> wmake libso

1.2.2 Modifying the code of the dynamicInkJetFvMesh class

Now it is time to modify the dynamicVigorWaveFvMesh files, to make the class perform as wanted.
In the dynamicVigorWaveFvMesh.H file ”frequency” is changed to ”waveLength” and ”refPlaneX”
is changed to ”periodTime”. The ”Private data” should now look like in Box 4.

dictionary dynamicMeshCoeffs_;

scalar amplitude_;

scalar waveLength_;

scalar periodTime_;

pointIOField stationaryPoints_;

Box 4: The Private data of the dynamicVigorWaveFvMesh.H file

More important changes will be made in the dynamicVigorWaveFvMesh.C class. The motion of
a traveling water wave will be simulated using a sinus function, namely equation 1.1.

y = tanh(x/4) ∗Asin(2πx/λ+ 2πt/T) (1.1)

Here, A = amplitude, λ = wavelength and T = ”the time for one complete oscillation”. The
”tanh” function is there to ensure that the fixed boundary condition of the left wall is enforced. It
goes to 1 as x goes to infinity and it is divided by 4 to make it go slower to 1. It is really a matter
of deciding how ”strong” the rubber hose is and how much it stretches by the fixed wall. The ”+”
in the sinus function, makes sure that the wave moves from the right to the left.

In the dynamicVigorWaveFvMesh.C file, ”frequency” is changed to ”waveLength” and ”ref-
PlaneX” is changed to ”periodTime” everywhere. Then, the bool function below the headline,
”Member Funcions”, is modified to implement the traveling wave equation.

3

1.2. CREATING THE NEW CLASSCHAPTER 1. TUTORIAL VIGOR WAVE ENERGY CONVERTER

bool Foam::dynamicVigorWaveFvMesh::update()

{

pointField newPoints = stationaryPoints_;

pointField toZero = stationaryPoints_;

forAll(newPoints,i)

{

toZero[i][0]=toZero[i][0]-stationaryPoints_[1][0];

newPoints[i][1]=stationaryPoints_[i][1]+tanh(toZero[i][0]/4)*amplitude_*

sin(2*mathematicalConstant::pi*toZero[i][0]/waveLength_+

2*mathematicalConstant::pi*time().value()/periodTime_);

}

fvMesh::movePoints(newPoints);

volVectorField& U =

const_cast<volVectorField&>(lookupObject<volVectorField>("U"));

U.correctBoundaryConditions();

return true;

}

Box 5: The bool function of the dynamicVigorWaveFvMesh.C file

This means that instead of using the newPointsreplace function, which the author knowl-
edge about is very limited, a for loop is used to step through every node of the domain, updat-
ing the y-coordinate for each timestep with the traveling wave equation. The update is done to
newPoints[i][1], which is the new position of y, by adding the value of the traveling wave equa-
tion to the stationary position of y. The toZero field is used to translate any mesh that does not
have the left wall at the origin, as the travel wave function expects the left wall to be located at
x=0. This is why the x-value of toZero is used as this ensures that the traveling wave equation
works properly.

The class can now be compiled again.

>> cd $WM_PROJECT_USER_DIR/run/dynamicVigorWaveFvMesh

>> wmake libso

In order to demonstrate that the new class works, a simple case will be set up.

4

1.3. SETTING UP A SIMPLE CASECHAPTER 1. TUTORIAL VIGOR WAVE ENERGY CONVERTER

1.3 Setting up a simple case

To simulate the multiphase system of water and air in the moving rubber hose, the interDyMFoam

solver will be used. A tutorial case, sloshingTank2D, which uses the interDyMFoam solver and
therefore is suitable to this case is copied into the run folder.

>> cp -r $FOAM_TUTORIALS/multiphase/interDyMFoam/ras/sloshingTank2D \

$WM_PROJECT_USER_DIR/run/VigorWave

>> cd $WM_PROJECT_USER_DIR/run/VigorWave

The Allclean and Allmake files can be removed since they will not be needed.

1.3.1 The mesh

Now the tutorial case will be altered to satisfy the new requirements. Firstly, the blockmeshDict

file will be changed to produce the desirable geometry. It can be located in the contant/polymesh

dictionary and it should, when updated, look like Box 6. This will create a simple thin 2D rectangular
mesh, with just a few cells to save computer capacity. In reality, the rubber hose is supposed to be
250 meter but here the case is just set up to prove that the motion mesh class works, so therefore
the mesh is set to 15 meters long and 0.6 meters thick.

5

1.3. SETTING UP A SIMPLE CASECHAPTER 1. TUTORIAL VIGOR WAVE ENERGY CONVERTER

convertToMeters 10;

vertices

(

(0 0.06 0)

(0 0 0)

(1.5 0 0)

(1.5 0.06 0)

(0 0.06 0.01)

(0 0 0.01)

(1.5 0 0.01)

(1.5 0.06 0.01)

);

blocks

(

hex (0 1 2 3 4 5 6 7) (4 100 1) simpleGrading (1 1 1)

);

edges

(

);

patches

(

wall movingWall

(

(0 4 7 3)

(1 2 6 5)

)

patch inlet

(

(3 7 6 2)

)

patch outlet

(

(1 5 4 0)

)

empty frontAndBack

(

(0 3 2 1)

(4 5 6 7)

)

);

mergePatchPairs

(

);

Box 6: The code of the blockmeshDict file

6

1.3. SETTING UP A SIMPLE CASECHAPTER 1. TUTORIAL VIGOR WAVE ENERGY CONVERTER

When the blockmeshDict file has been updated, the mesh can be created using blockMesh. It
is always recommended to run checkMesh to make sure that the mesh is ok for the simulation.

>> blockMesh

>> checkMesh

1.3.2 Boundary conditions

The boundary conditions must now be changed so that they correspond to the patches of the new
mesh. In the 0 dictionary the three files alpha.org, p and U are found. In the file alpha.org it can
be specified if the fluid should be air or water, 0 for air and 1 for water. It need to be copied and
renamed to alpha1 before running the simulation.

>> cd $WM_PROJECT_USER_DIR/run/VigorWave/0

>> cp alpha1.org alpha1

The p and U files will use pretty basic boundary conditions and how they should look can
be seen below. Since the movingWall will move, the movingWallVelocity is suitable for U and
bouyantPressure for p. For the inlet a velocity speed of 10 m/s is specifed in the negative x-
direction to allow inflow.

dimensions [0 1 -1 0 0 0 0];

internalField uniform (0 0 0);

boundaryField

{

movingWall

{

type movingWallVelocity;

value uniform (0 0 0);

}

inlet

{

type fixedValue;

value uniform (-10 0 0);

}

outlet

{

type pressureInletOutletVelocity;

value uniform (0 0 0);

}

frontAndBack

{

type empty;

}

}

Box 7: The boundary conditions of U

7

1.3. SETTING UP A SIMPLE CASECHAPTER 1. TUTORIAL VIGOR WAVE ENERGY CONVERTER

dimensions [1 -1 -2 0 0 0 0];

internalField uniform 0;

boundaryField

{

movingWall

{

type buoyantPressure;

value uniform 0;

}

inlet

{

type zeroGradient;

}

outlet

{

type totalPressure;

p0 uniform 0;

U U;

phi phi;

rho rho;

psi none;

gamma 1;

value uniform 0;

}

frontAndBack

{

type empty;

}

}

Box 8: The boundary conditions of p

To simulate a unsteady flow of water, the timeVaryingUniformFixedValue boundary condition
will be used for the inlet in the alpha file. As it uses the interpolationTable class, it need as
input data a file that holds information about which value alpha is going to have at a specific
timestep. This file should be put in the main directory of the case. Also, a outOfBounds string
need to be specified, which decides what to do when the simulaton has passed the scope of the
created timestep file. It can either be error, warn, clamp or repeat. For example, clamp will
just continue with the last given value for the rest of the timesteps and repeat will just loop over
the specified values. More information can be found in the interpolationTable.H file located at
$FOAM_SRC/OpenFOAM/interpolations/interpolationTable.

So, a new file named ”timesteps” is created in the main directory of the case and inside it the
values of alpha at certain timesteps are specified. It should look like in Box 9, meaning alpha equals
1 from timestep 0.0 to timestep 0.5 where it changes to 0. As repeat will be used for outOfBounds,
nothing more than this needs to be specified.

8

1.3. SETTING UP A SIMPLE CASECHAPTER 1. TUTORIAL VIGOR WAVE ENERGY CONVERTER

(

(0.0 1)

(0.5 0)

)

Box 9: The timestep file

Now the alpha1 file can be altered to include timeVaryingUniformFixedValue for the inlet and
inletOutlet for the outlet. The resulting alpha file is shown below.

dimensions [0 0 0 0 0 0 0];

internalField uniform 0;

boundaryField

{

movingWall

{

type zeroGradient;

}

inlet

{

type timeVaryingUniformFixedValue;

fileName "timesteps";

outOfBounds repeat;

}

outlet

{

type inletOutlet;

inletValue uniform 0;

value uniform 0;

}

frontAndBack

{

type empty;

}

}

Box 10: The boundary conditions for alpha

Now, when all the boundary condition have been changed, the mesh can be viewed using
paraFoam.

1.3.3 The constant and system directory

In the constant directory, the dynamicMeshDict needs to call the new class dynamicVigorWaveFvMesh
and the amplitude, the waveLength and the periodTime of the wave need to be specified. The
dynamicMeshDict file should therefore look like this:

9

1.3. SETTING UP A SIMPLE CASECHAPTER 1. TUTORIAL VIGOR WAVE ENERGY CONVERTER

dynamicFvMeshLibs ("libdynamicVigorWaveFvMesh.so");

dynamicFvMesh dynamicVigorWaveFvMesh;

dynamicVigorWaveFvMeshCoeffs

{

amplitude 1;

waveLength 8;

periodTime 1;

}

Box 11: The code of the dynamicMeshDict file

Still, in the constant directory the g file need to be altered so that the gravitation is in the
negative y-direction instead of the negative z-direction. Nothing more needs to be changed as the
coefficients of water and air is already specified in transportProperties and laminar flow is set in
the turbulentProperties. Actually, the RASProperties file can even be removed, as the flow is
set to laminar.

From the constant directory the focus is turned to the system directory, where a couple of files
that needs modification is located. The setFieldsDict file can be removed since it will not be used
in this case. Open the controlDict file and change the ”endtime” value to 10 and the ”deltaT” to
0.05. Also, change the writeCompression from ”compressed” to ”uncompressed” as the files in the
new case is uncompressed only. The functions formula located after maxDelta can be deleted in the
file as it is of no interest to write out probes and wallPressures at this point. The controlDict file
should finaly look like below when finished.

10

1.3. SETTING UP A SIMPLE CASECHAPTER 1. TUTORIAL VIGOR WAVE ENERGY CONVERTER

application interDyMFoam;

startFrom startTime;

startTime 0;

stopAt endTime;

endTime 10;

deltaT 0.05;

writeControl adjustableRunTime;

writeInterval 0.05;

purgeWrite 0;

writeFormat ascii;

writePrecision 6;

writeCompression uncompressed;

timeFormat general;

timePrecision 6;

runTimeModifiable yes;

adjustTimeStep yes;

maxCo 0.5;

maxDeltaT 1;

Box 12: The code of the controlDict file

The decomposeParDict file is used if the simulation should be run on more than one core.
Typically the numberOfSubdomains is put to the number of cores the computer have and the method
of decomposition is chosen to, for example, ”simple”. If the computer only have one core, this file
will be skipped.

The last thing that has to be done is to check if the reference point for the pressure, which is
defined in the fvSolution file, is defined insided the domain. By opening the fvSolution file and
scrolling down to where the coefficients of the PISO loop are defined, the pRefPoint is found to be
(0 0 0.15). That is a point inside the domain, so nothing has to be changed.

Run the case with interDyMFoam. The calculation will take approximately 1.5 minutes on a Intel
Core 2 Duo CPU T5750 2.00GHz with 3GB ram.

11

1.4. POSTPROCESSING OF THE CASECHAPTER 1. TUTORIAL VIGOR WAVE ENERGY CONVERTER

1.4 Postprocessing of the case

Here Paraview has been used to produce a few pictures of the alpha value, e.g the water distribution,
in the simulation at different timesteps. The pictures is shown just to help the user verify that the
simulation is correct and that the mesh motion class works. As seen by the figures the wave moves
from the right to the left and in the meantime the water is entering the rubber hose at the right
end. Also, note that the wave is slowly vanishing as it approaches the fixed left end.

(a) t=0.1 (b) t=0.2 (c) t=0.3

(a) t=0.4 (b) t=0.5 (c) t=0.6

12

