
Project in the MSc/PhD course:

CFD with OpenSource software

Water Sprinkler using OpenFOAM 1.7.1

Author: Martin Hammas

Reviewer: Mattias Olander and Jelena Andric

November 2, 2010

Contents

1 Water Sprinkler 2

2 The watersprinkler case 2

2.1 The geometry . 2
2.2 Boundary conditions . 3
2.3 The utility AlphaCalc.C . 8
2.4 foamLog . 10
2.5 Python . 10
2.6 Histogram . 11
2.7 Allrun script . 12
2.8 Visualisaton of the case . 12

1

1. Water Sprinkler 2

1 Water Sprinkler

Modifications of the geometry of the damBreak case are made to resemble a
water sprinkler. This is similar to the Master thesis done by Marianne Sjöstrand.
The geometry is done setting up the vertices, blocks etc in blockMeshDict in
two dimensions. A utility, AlphaCalc.C is implemented to analyze the water
distribution in the watercollectors. A script then plots the water distribution
as a histrogram, where each column corresponds to the amount of water in a
single water collector. The script is written in Python. This tutorial is setup
using OpenFOAM 1.7.1.

2 The watersprinkler case

2.1 The geometry

The geometry of the case is modified from the original damBreak case. The
geometry has been modified in different ways, more blocks had to be made
due to the twelve water collectors. This is because in blockMeshDict where
the mesh is defined, the faces have to be merged in every direction, i.e. you
cannot have two blocks facing each other (with the same geometric distance)
with different number of cells. We start by copying the whole damBreak case to
a new map by writing the following lines in the terminal window

run

mkdir sprinkler

cp -r $FOAM_TUTORIALS/multiphase/interFoam/laminar/damBreak sprinkler

cd sprinkler/damBreak

We are now in the case map sprinkler/damBreak. Start by replacing the
blockMeshDict, it is located in the map /constant/polyMesh with the dictio-
nary that was downloaded from the webpage
http://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2010/.

cp blockMeshDict constant/polyMesh

After replacement, write the following in the terminal window

blockMesh

checkMesh

This builds up the geometry from the file blockMeshDict using a mesh gener-
ator called blockMesh. The mesh now looks like

2.2. Boundary conditions 3

A zoomed figure showing the twelve water collectors

The blue patch in the upper left corner represents the inlet. In this case it is
water with phase value 1. Everywhere else phase value 0. The red upper right
patch is defined as ”atmosphere”. This is because since water is entering the
system, something has to come out, in this case, fluid with phase 0. The black
patches represent the patch wall.

2.2 Boundary conditions

The boundary conditions are set up in the 0/U file. the boundary condition,
rampedFixedValue has been chosen for the inlet. This is done because the
main thing with this tutorial is to calculate the amount of water in the water
collectors. This can not be done if the water rushes in through the entire
simulation time. It is in other words chosen to simulate some kind of stationary
flow. The inlet velocity quickly switches from Uy = |0.5| to Uy = 0 on a steep
ramp. The U file should look like

2.2. Boundary conditions 4

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 1.7.1 |

| \\ / A nd | Web: www.OpenFOAM.com |

| \\/ M anipulation | |

---/

FoamFile

{

version 2.0;

format ascii;

class volVectorField;

location "0";

object U;

}

// * //

dimensions [0 1 -1 0 0 0 0];

internalField uniform (0 0 0);

boundaryField

{

inlet

{

type rampedFixedValue;

refValueLow uniform (0 -0.5 0);

refValueHigh uniform (0 0 0);

startRamp 0.1;

endRamp 0.15;

value uniform (0 0 0);

}

column

{

type fixedValue;

value uniform (0 0 0);

}

leftWall

{

type fixedValue;

value uniform (0 0 0);

}

rightWall

{

type fixedValue;

value uniform (0 0 0);

}

lowerWall

{

2.2. Boundary conditions 5

type fixedValue;

value uniform (0 0 0);

}

atmosphere

{

type pressureInletOutletVelocity;

value uniform (0 0 0);

}

defaultFaces

{

type empty;

}

}

The column is the wall to the right of the inlet. A tutorial on how to download
and compile rampedFixedValue with changes are discribed in
http://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2010/programmingTutorial.pdf

under the section ”Implementing a new boundary condition”. This tutorial
works fine using the already existing boundary conditions, fixedValue or
timeVaryingUniformFixedValue.

The 0/alpha1 has to be changed. Two new boundaries are prescribed, inlet
and column. The inlet has the uniform value of 1. Value 1 indicates water in
this case, and 0 elsewhere is air. The column patch is just a wall, and therefore
it should be of type zeroGradient. The initial file should be

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 1.7.1 |

| \\ / A nd | Web: www.OpenFOAM.com |

| \\/ M anipulation | |

---/

FoamFile

{

version 2.0;

format ascii;

class volScalarField;

object alpha;

}

// * //

dimensions [0 0 0 0 0 0 0];

internalField uniform 0;

boundaryField

{

2.2. Boundary conditions 6

inlet

{

type fixedValue;

value uniform 1;

}

column

{

type zeroGradient;

}

leftWall

{

type zeroGradient;

}

rightWall

{

type zeroGradient;

}

lowerWall

{

type zeroGradient;

}

atmosphere

{

type inletOutlet;

inletValue uniform 0;

value uniform 0;

}

defaultFaces

{

type empty;

}

}

// *** //

Finally some modifications should be done in 0/p_rgh, which is the dictionary
for the dynamic pressure.

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 1.7.1 |

| \\ / A nd | Web: www.OpenFOAM.com |

2.2. Boundary conditions 7

| \\/ M anipulation | |

---/

FoamFile

{

version 2.0;

format ascii;

class volScalarField;

object p_rgh;

}

// * //

dimensions [1 -1 -2 0 0 0 0];

internalField uniform 0;

boundaryField

{

inlet

{

type buoyantPressure;

value uniform 0;

}

column

{

type buoyantPressure;

value uniform 0;

}

leftWall

{

type buoyantPressure;

value uniform 0;

}

rightWall

{

type buoyantPressure;

value uniform 0;

}

lowerWall

{

type buoyantPressure;

value uniform 0;

}

atmosphere

{

2.3. The utility AlphaCalc.C 8

type totalPressure;

p0 uniform 0;

U U;

phi phi;

rho rho;

psi none;

gamma 1;

value uniform 0;

}

defaultFaces

{

type empty;

}

}

// *** //

Change the endtime in /system/controlDict to 2. Before running the case,
the dynamic library that refers to the boundary condition rampedFixedValue,
should be added on the last line in the file system/controlDict

libs ("libMyBCs.so");

Write the following in the terminal window

interFoam

In order to run the case.

2.3 The utility AlphaCalc.C

This utility can be downloaded from the webpage along with the other files

http://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2010/.

AlphaCalc needs to be added in the case directory. When standing in
tutorials/sprinkler/damBreak, write

cp -r AlphaCalc tutorials/sprinkler/damBreak/AlphaCalc

cd AlphaCalc

The directory should consist of the following files

AlphaCalc.C Make

Inside the Make directory there should be two files

files options

Make sure that the files contains the following

2.3. The utility AlphaCalc.C 9

AlphaCalc.C

EXE = $(FOAM_USER_APPBIN)/AlphaCalc

And the options file should contain

EXE_INC = \

-I$(LIB_SRC)/finiteVolume/lnInclude

EXE_LIBS = \

-lfiniteVolume

If we take a look in the file AlphaCalc.C. The most interresting part are the
loops that checks if the y-coordinate of each cell center is negative. If so, the
x-coordinate is in a specific interval (that corresponds to a specific collector).
Then it takes the previously loaded scalarfield alpha1 and multiplies it with the
vectorfield V, where V are the volumes for each cell. It sums up this product for
each cell that belongs to a specific collector. The different products represents
the amount of water in each collector. Only the alpha values from the last
timestep are loaded.

scalar waterLevel = 0;

forAll(centres,nIter)

{

if(centres[nIter][1] < 0)

{

if(centres[nIter][0] < 0.4*0.146) // first collector

{

waterLevel = waterLevel + alpha1[nIter]*volumes[nIter];

}

}

}

Info << "waterLevel: " << waterLevel << endl;

This is the first loop out of twelve. There are twelve loops because there
are twelve different water collectors in the system. The first collector has x-
coordinates in the range [0.2 0.4]*0.146, and of course, all y-coordinates of the
cell centers are negative. This sum then corresponds to the amount of water
in collector number 1. To compile this C++ utility, write the following when
standing in the directory sprinkler

wmake AlphaCalc

It then compiles the utility, so it can be used. Run the utility when standing in
the case directory, and save the print as a log file with

AlphaCalc >& log

2.4. foamLog 10

2.4 foamLog

To get all the twelve sums from AlphaCalc.C in a file that later on can be
used write the following in the terminal window, while standing in the directory
sprinkler

sudo gedit /<InstallationDirectoryOfOpenFOAM>/bin/foamLog.db

In this file, add the following line in the beginning

waterLevel/waterLevel: /waterLevel:

Comment all the others with #. Now, write the following while standing in the
sprinkler/damBreak directory

foamLog log

This extracts the sums from the log-file created when we ran the AlphaCalc.C
utility. To get rid of the ”waterLevel:” in the file logs/waterLevel_0 write

sed -e s/"waterLevel"/""/g logs/waterLevel_0 > waterLevel

It then creates a file, sprinkler/damBreak/waterLevel with 12 rows that cor-
responds to the sums of each water collector.

2.5 Python

For the following script we need to install PyFoam, with a few packages. To get
Python, write the following text in the terminal window

cd $HOME/OpenFOAM

mkdir linuxSrc

cd linuxSrc

svn co https://openfoam-extend.svn.sourceforge.net/svnroot/ \

openfoam-extend/trunk/Breeder/other/scripting/PyFoam/

python setup.py install --prefix=$HOME/OpenFOAM

Afterwards, add the following lines in the end of your bashrc file, located in
etc/apps/paraview3/bashrc

alias PF=export FOAM_INST_DIR=$HOME/OpenFOAM; \

export PYTHONPATH=$FOAM_INST_DIR/PyFoam/lib/python-2.6/site-packages:$PYTHONPATH; \

export PATH=$FOAM_INST_DIR/PyFoam/bin:$PATH

Use the alias PF to load Python. Two packages are needed for this tutorial,
namely Matplotlib and Numpy. Matplotlib can be found on http://matplotlib.sourceforge.net
and Numpy at http://numpy.scipy.org. If you are running Ubuntu you can
easily download and compile it using Synaptic Package Manager, just search for
the packages python-matplotlib and python-numpy.

2.6. Histogram 11

2.6 Histogram

To get some kind of distribution, or visualisation from the sums calculated from
the AlphaCalc.C utility, we make a script in Python that plots the distribution
as a histogram. It looks like

#!/usr/bin/env python

import numpy.numarray as na

from pylab import *

import matplotlib.mlab as mlab

X = mlab.load(’waterLevel’)

labels = ["1","2","3","4","5","6","7","8","9","10","11","12"]

xlocations = na.array(range(len(X)))+0.8

width = 0.8

bar(xlocations, X, width=width)

xticks(xlocations+ width/2, labels)

xlim(0, xlocations[-1]+width*2)

title("Histogram over the water collectors")

gca().get_xaxis().tick_bottom()

gca().get_yaxis().tick_left()

show()

First it imports the packages, Numpy and Matplotlib. It then loads the different
sums corresponding to the waterlevel of each collector as an array. Since there
are twelve different collectors, the length of ”waterLevel” should be twelve. They
are also labeled using labels, from 1 to 12.

Copy and paste this, save it as histogram.py in the sprinkler/damBreak

directory. To run the script, write

python histogram.py

This command plots a histogram of the water distribution in the twelve different
collectors. Number 1 is the collector closest to the inlet. This is, as said before,
the amount of water in each collector calculated from the last timestep in the
simulation. This is how the histogram should look like

2.7. Allrun script 12

2.7 Allrun script

In order to run all this including the solver interFoam we can make a script,
call it script. Make it the following way

gedit script

The file should consist of the following lines

interFoam;

AlphaCalc >& log;

foamLog log;

sed -e s/"waterLevel"/""/g logs/waterLevel_0 > waterLevel;

python histogram.py;

Afterwards we have to ”tell” linux that this is a script. In order to do that

chmod 777 script

It should now be ”green” and executable using the command

./script

2.8 Visualisaton of the case

Here is a picture of the case, at timestep 0.6. This is a quite early timestep,
and the velocity of the inlet isn’t that high. The water hasn’t arrived to the
water collectors yet.

2.8. Visualisaton of the case 13

The picture below shows the simulation at the latest timestep, that is 2. Now
it can be seen that the collectors contain some water.

The inlet is defined following in the 0/U file

inlet

{

type rampedFixedValue;

refValueLow uniform (0 -0.5 0);

refValueHigh uniform (0 0 0);

startRamp 0.1;

endRamp 1;

value uniform (0 0 0);

}

	Water Sprinkler
	The watersprinkler case
	The geometry
	Boundary conditions
	The utility AlphaCalc.C
	foamLog
	Python
	Histogram
	Allrun script
	Visualisaton of the case

