
Chalmers University of Technology

CFD with OpenSource software, Project

Droplet collisions in dieselSpray and
implementations of collisions in

solidParticle

Developed for OpenFOAM-1.5.dev

Author:
Josef Runsten

Peer reviewed by:
Anne Koesters
Jelena Andric

November 3, 2010

Preface

This tutorial is part of the examination of the MSc/PhD course in CFD with OpenSource software,
2010, http://www.tfd.chalmers.se/~hani/kurser/OS_CFD/, at Chalmers University of Technol-
ogy, Göteborg. The project described in this document is developed and tested in OpenFOAM-1.5-
dev and describes a possible way to implement a collision model of solid particles. A thank you to
examinator H̊akan Nilsson and assistant Jelena Andric for their patience and support during the
project.

1

http://www.tfd.chalmers.se/~hani/kurser/OS_CFD/

Contents

1 Droplet collisions in dieselSpray 3
1.1 Introduction . 3
1.2 Collisions in dieselSpray . 3

1.2.1 Selecting collision model . 3
1.2.2 The O’Rourke collision model . 3
1.2.3 The trajectory collision model . 6

2 Tutorial: Particle collisions 9
2.1 Collisions in solidParticle . 9

2.1.1 The new solid particle collision model . 9
2.1.2 Creating collidingSolidParticleFoam . 10
2.1.3 Detecting collisions . 11
2.1.4 Velocity change upon collision . 12
2.1.5 Creating the case . 13
2.1.6 Running the case . 14
2.1.7 Issues and recommendations . 15

2

Chapter 1

Droplet collisions in dieselSpray

1.1 Introduction

In this chapter the modeling of collisions in the class dieselSpray is described. Today there exist no
way to model collisions between solid particles in OpenFOAM-1.5.dev. The aim of the project is to
implement such a model in the solidParticle class and to model a collision of two solid particles of
equal density and diameter. This could be used as a basic work to create a more advanced collision
model.

1.2 Collisions in dieselSpray

In order to implement collision models for solid particles it can be useful to understand how they
are used for droplets. Hence, we will have a look at the spray submodels in the class dieselSpray.

1.2.1 Selecting collision model

A case using the dieselSpray class is aachenBomb, located in
$FOAM_TUTORIALS/dieselFoam/aachenBomb. In the dictionary constant/sprayProperties the
collision model is set to off as default. This can be changed to either ORourke or trajectory,
which are two different collision models, found in
/$FOAM_SRC/src/lagrangian/dieselSpray/spraySubModels/collisionModel.

1.2.2 The O’Rourke collision model

In the O’Rourke collision model, if a calculated collision probability is high enough and two particles
are in the same cell they will collide regardless of their direction. The probability of a collision is the
same for parcels heading towards each other as for parcels with opposite directions.. The collision
frequency increases with smaller cell size, see eq (1.1), but there is no condition saying that two
parcels has be close enough that they actually can meet within the time step.

ν = Nmin
π

4Vcell
(Dmin +Dmax)2|Urel|∆t (1.1)

where Nmin is the number of droplets in the smaller parcel, Vcell is the volume of the cell, D is the
diameter, Urel is the relative velocity between the droplets and ∆t is the time step.
To use this model, make the following changes in /constant/sprayProperties

collisionModel ORourke;//off;

ORourkeCoeffs

{

coalescence off;

}

3

1.2. COLLISIONS IN DIESELSPRAYCHAPTER 1. DROPLET COLLISIONS IN DIESELSPRAY

Switching coalescence on or off determines if droplets will coalesce after collision or not. If we
would like to use this model for solid particles, which can not coalesce, this option would have to be
disabled. Let’s have a look at the files associated with the O’Rourke model, located in:
/$FOAM_SRC/src/lagrangian/dieselSpray/spraySubModels/collisionModel/ORourke/

The O’Rourke collision model class inherits attributes from collisionModel.C, which is an ab-
stract class. We can see this in the beginning of ORourkeCollisionModel.H

class ORourkeCollisionModel

:

public collisionModel

{

In ORourkeCollisionModel.C, the member function ORourkeCollisionModel::collideParcels is
used to check if two parcels (a parcel represents a group of droplets with the same physical properties
and can be traced as one single droplet.This is used in order to avoid calculating for all droplets,
which can be very costly in time) collide. First the size of the spray is checked. If the number of
particles is less than 2 there can be no collision.

if (spray_.size() < 2)

{

return;

}

An iterator is defined that goes through all the parcels in the domain, checks in which cells they are
in and if two parcels in an iteration are in the same cell.

spray::iterator secondParcel = spray_.begin();

++secondParcel;

spray::iterator p1 = secondParcel;

while (p1 != spray_.end())

{

label cell1 = p1().cell();

spray::iterator p2 = spray_.begin();

while (p2 != p1)

{

label cell2 = p2().cell();

// No collision if parcels are not in the same cell

If that is the case, the file sameCell.H is included, providing the collision behavior of the droplets
in the two parcels.

if (cell1 == cell2)

{

include "sameCell.H"

} // if - parcels in same cell

The rest of the code in this file deals with removal of the coalesced parcels. The smaller of the
two coalesced parcels will be deleted. In sameCell.H the destiny of the parcels in the same cell is
decided, based on probabilities depending on cell volume, relative velocity between parcels , size
and number of droplets in each parcel. The implementation is the same as described in the KIVA
manual [1]. Commented code describing the collision model is shown below.

4

1.2. COLLISIONS IN DIESELSPRAYCHAPTER 1. DROPLET COLLISIONS IN DIESELSPRAY

vector v1 = p1().U(); //Velocity of particle 1

vector v2 = p2().U(); //Velocity of particle 2

vector vRel = v1 - v2; //Relative velocity

scalar magVRel = mag(vRel); //Magnitude of the relative velocity

scalar sumD = p1().d() + p2().d(); //Sum of particle diameters

scalar pc = spray_.p()[p1().cell()]; //Pressure in the cell

//Decided which parcel is smaller

spray::iterator pMin = p1;

spray::iterator pMax = p2;

scalar dMin = pMin().d();

scalar dMax = pMax().d();

if (dMin > dMax) {

dMin = pMax().d();

dMax = pMin().d();

pMin = p2;

pMax = p1;

}

//Density of the big and small parcel

scalar rhoMax = spray_.fuels().rho(pc, pMax().T(), pMax().X());

scalar rhoMin = spray_.fuels().rho(pc, pMin().T(), pMin().X());

scalar mMax = pMax().m(); //Mass of the big parcel

scalar mMin = pMin().m(); //Mass of the small parcel

scalar mTot = mMax + mMin; //Sum of the two parcel masses

scalar nMax = pMax().N(rhoMax); //Number of droplets in the big parcel

scalar nMin = pMin().N(rhoMin); //Number of droplets in the small parcel

scalar mdMin = mMin/nMin; //Mean mass of droplets in the small parcel

//Calculating the probablity of collisions, according to the KIVA manual

scalar nu0 = 0.25*mathematicalConstant::pi*sumD*sumD*magVRel*dt/vols_[cell1];

scalar nu = nMin*nu0; //Collision frequency

scalar collProb = exp(-nu); //Collision probability

scalar xx = rndGen_.scalar01(); //Random number between 0 and 1

// collision occur

if ((xx > collProb) && (mMin > VSMALL) && (mMax > VSMALL)) {

The intermediate part of the code deals with the probability for coalescence. In this project the
focus is not on this. For grazing collisions (no coalescence) the parcel speed and direction after
collision depends on the random restitution coefficient gf, and is calculated ensuring conservation
of momentum.

// Grazing collision (no coalescence)

else {

scalar gf = sqrt(prob) - sqrt(coalesceProb); //Restitution coefficient

scalar denom = 1.0 - sqrt(coalesceProb);

5

1.2. COLLISIONS IN DIESELSPRAYCHAPTER 1. DROPLET COLLISIONS IN DIESELSPRAY

if (denom < 1.0e-5) {

denom = 1.0;

}

gf /= denom; //Not used if coalescence is turned off

// if gf negative, this means that coalescence is turned off

// and these parcels should have coalesced

gf = max(0.0, gf);

//Density of parcel 1 and 2

scalar rho1 = spray_.fuels().rho(pc, p1().T(), p1().X());

scalar rho2 = spray_.fuels().rho(pc, p2().T(), p2().X());

scalar m1 = p1().m(); //Mass of parcel 1

scalar m2 = p2().m(); //Mass of parcel 2

scalar n1 = p1().N(rho1); //Number of droplets in of parcel 1

scalar n2 = p2().N(rho2); //Number of droplets in of parcel 2

//New velocities are calculated using the random restitution coefficient

// gf -> 1 => v1p -> p1().U() ...

// gf -> 0 => v1p -> momentum/(m1+m2)

vector mr = m1*v1 + m2*v2;

//Conservation of momentum is assured

vector v1p = (mr + m2*gf*vRel)/(m1+m2);

vector v2p = (mr - m1*gf*vRel)/(m1+m2);

if (n1 < n2) {

p1().U() = v1p;

p2().U() = (n1*v2p + (n2-n1)*v2)/n2;

}

else {

p1().U() = (n2*v1p + (n1-n2)*v1)/n1;

p2().U() = v2p;

}

1.2.3 The trajectory collision model

If we instead want to use the trajectory model [2] we specify this in constant/sprayProperties and
add the coalescence switch again (set to off even in this case if we want to use it for solid particles).
cSpace and sTime are model constants related to spatial and temporal collision probability decay.

collisionModel trajectory;//off;

trajectoryCoeffs

{

cSpace 1;

cTime 0.3;

coalescence off;

}

trajectoryModel.C and trajectoryModel.H look the same as the O’Rourke model files. The
difference is how the collision is handled once two parcels are in the same cell. This is decided in the
header file trajectoryCM.H which is similar to the header file sameCell.H in the O’Rourke collision
model. The main difference is that the direction of travel of the parcels is taken into account, see
figures 1.1-1.2.

6

1.2. COLLISIONS IN DIESELSPRAYCHAPTER 1. DROPLET COLLISIONS IN DIESELSPRAY

vector p = p2().position() - p1().position(); //Distance vector between parcels

scalar dist = mag(p); //Distance between parcels

//Dot product of vRel and norm. distance vector

scalar vAlign = vRel & (p/(dist+SMALL));

if (vAlign > 0) //Collision ONLY IF the parcels are traveling towards each other

{

Figure 1.1: Velocity direction does not
matter in O’Rourke. Opposite directions
have just as high chance of collision as two
particles heading towards each other.

Figure 1.2: Trajectory model takes direc-
tion into account, as well as checks if col-
lision can occur within the current time
step.

The second difference to the O’Rourke model is the consideration if a collision is possible within
the current time step, see eq. 1.2. Compared to the O’Rourke model the trajectory model takes
care of the position and direction of travel of the parcels. The distance between the parcels must
be smaller than the maximal distance defined by the relative velocity between the parcels times the
time step.

Ualign∆t > |x2 − x1| −
Dmax +Dmin

2
(1.2)

where

Ualign = Urel · x2−x1

|x2−x1|

The collision probability is calculated roughly the same way as in O’Rourke, with a few modifications.
alpha and beta are used to ensure that the parcels, when they reach the projected collision point,
will be there at the same time.

scalar v1Mag = mag(v1); //Magnitude of velocity of parcel 1

scalar v2Mag = mag(v2); //Magnitude of velocity of parcel 2

vector nv1 = v1/v1Mag; //Normalized velocity of parcel 1

vector nv2 = v2/v2Mag; //Normalized velocity of parcel 2

scalar v1v2 = nv1 & nv2;//Dot product of the normalized velocities

//Dot product of the normalized velocity and distance vector

scalar v1p = nv1 & p;

7

1.2. COLLISIONS IN DIESELSPRAYCHAPTER 1. DROPLET COLLISIONS IN DIESELSPRAY

scalar v2p = nv2 & p;

//The probability is calculated using a special condition

scalar det = 1.0 - v1v2*v1v2;

scalar alpha = 1.0e+20;

scalar beta = 1.0e+20;

if (mag(det) > 1.0e-4)

{

beta = -(v2p - v1v2*v1p)/det;

alpha = v1p + v1v2*beta;

}

alpha /= v1Mag*dt;

beta /= v2Mag*dt;

// is collision possible within this time step

if ((alpha>0) && (alpha<1.0) && (beta>0) && (beta<1.0))

{

vector p1c = p1().position() + alpha*v1*dt; //New parcel position

vector p2c = p2().position() + beta*v2*dt; //New parcel position

scalar closestDist = mag(p1c-p2c); //New distance between parcels

scalar collProb = //Probability of collision

pow(0.5*sumD/max(0.5*sumD, closestDist), cSpace_)

*exp(-cTime_*mag(alpha-beta));

8

Chapter 2

Tutorial: Particle collisions

2.1 Collisions in solidParticle

Currently, there is no collision model implemented in the solidParticle class. In order to introduce
such a model, several changes need to be made. Without going into too much detail on how the
solidParticle class is built, this section describes the parts needed in order to implement a simple
collision model in this class. The O’Rourke and trajectory collision model implemented in the
dieselSpray class that were described previously will not be implemented for the collisions of solid
particles. Instead a much simpler model of only two identical solid particles will be used. The
chosen model is developed for solid particles, which makes more sense than to use a model created
for droplets (where phonomena like breakup and coalescence are present). Implementing the entire
structure of the collision models in dieselSpray was considered too complex and more suitable for a
larger project, hence we will study only two particles.

2.1.1 The new solid particle collision model

The collision model we will use in this project is from ERCOFTAC [3]. It is based on preserving
momentum between particles. The model is simplified by saying that the angular velocity of the
particles is 0 and that the collisions are non-sliding. The velocities are then reduced to the following
expressions.

u∗p1 = up1 + Jx

mp1
, u∗p2 = − Jx

mp2

v∗p1 = vp1 +
Jy

mp1
, v∗p2 = − Jy

mp2

w∗p1 = + Jz

mp1
= 0, w∗p2 = − Jz

mp2
= 0

where * denotes the new values and Jx, Jy, Jz are the components of the impulsive force and reads
(again reduced by the assumption of no angular velocity or sliding):

Jx = −(1 + e)up1
mp1mp2

mp1+mp2

Jy = − 2
7vp1

mp2mp2

mp1+mp2

Jz = 0

where e is the coefficient of restitution. Note that the new velocities for BOTH particles depend
only on mass of the particles and the old velocity of the FIRST particle. This will turn out to be
an important part of programming the new model.

9

2.1. COLLISIONS IN SOLIDPARTICLE CHAPTER 2. TUTORIAL: PARTICLE COLLISIONS

2.1.2 Creating collidingSolidParticleFoam

Now let us get started with the modifications. First we need to get solidParticleFoam, created by
H̊akan Nilsson. Do this through subversion:

cd $FOAM_RUN

svn checkout http://openfoam-extend.svn.sourceforge.net/svnroot/openfoam-extend/\

trunk/Breeder_1.5/solvers/other/solidParticleFoam/

cd solidParticleFoam/

Rename the directory for the new solver and copy the needed solidParticle files into it. Find and
replace all occurances of solidParticle with collidingSolidParticle in all the files and then
rename the files.

mv solidParticleFoam collidingSolidParticleFoam

cd collidingSolidParticleFoam

wclean

cp $FOAM_SRC/lagrangian/solidParticle/solidParticle* .

cp -r $FOAM_SRC/lagrangian/solidParticle/lnInclude .

sed -i s/solidParticle/collidingSolidParticle/g solidParticle.C \

solidParticleCloud.C solidParticleCloud.H solidParticleCloudI.H \

solidParticleFoam.C solidParticle.H solidParticleI.H solidParticleIO.C

mv solidParticle.C collidingSolidParticle.C

mv solidParticleCloud.C collidingSolidParticleCloud.C

mv solidParticleCloud.H collidingSolidParticleCloud.H

mv solidParticleCloudI.H collidingSolidParticleCloudI.H

mv solidParticleFoam.C collidingSolidParticleFoam.C

mv solidParticle.H collidingSolidParticle.H

mv solidParticleI.H collidingSolidParticleI.H

mv solidParticleIO.C collidingSolidParticleIO.C

Edit the files Make/files

collidingSolidParticleFoam.C

collidingSolidParticle.C

collidingSolidParticleIO.C

collidingSolidParticleCloud.C

EXE = $(FOAM_USER_APPBIN)/collidingSolidParticleFoam

and Make/options

EXE_INC = \

-I$(LIB_SRC)/finiteVolume/lnInclude \

-I$(LIB_SRC)/lagrangian/basic/lnInclude

EXE_LIBS = \

-lfiniteVolume \

-llagrangian

We can now compile the solver and run the supplied case, in order to make sure that everything is
working properly. In the solver directory, type

wmake

cd ../box

blockMesh

collidingSolidParticleFoam >log

10

2.1. COLLISIONS IN SOLIDPARTICLE CHAPTER 2. TUTORIAL: PARTICLE COLLISIONS

To post process, type

foamToVTK

paraview

Load by clicking File>Load State>baseState.pvsm. A box with two moving particles should open
up. Notice that no collision occurs using this solver. We can now modify this without affecting the
original code.

2.1.3 Detecting collisions

The condition used to detect the occurrence of a collisions is similar to that of the O’Rourke model in
the dieselSpray class in the sense that the particles have to be in the same cell. A second condition
is that the distance between the two particles at the current time has to be less or equal to the
average particle diameter. This latter condition is a simpler version of the one used in the trajectory
model, where a possible collision is checked for the entire duration of the time step. To use this
model, changes in collidingSolidParticleCloud.C have to be made. After the member functions, add
the following:

void Foam::collidingSolidParticleCloud::checkCell()

{

List<label> lcell((*this).size());

List<scalar> ld((*this).size());

List<vector> lU((*this).size());

List<vector> lposition((*this).size());

bool collision;

label i=0;

forAllConstIter(Cloud<collidingSolidParticle>,*this,iter)

{

const collidingSolidParticle& p=iter();

lcell[i]=p.cell();

//Info <<"Particle " <<i<< " is in cell "<<lcell[i]<<endl;

lU[i]=p.U();

ld[i]=p.d();

lposition[i]=p.position();

i++;

}

//Info <<"p0-p1 = "<<mag(lposition[0]-lposition[1])<<endl;

//Info <<"Diameter = "<<(ld[0]+ld[1])/2<<endl;

//Only works for two particles.

if (lcell[0]==lcell[1] && mag(lposition[0]-lposition[1])<=(ld[0]+ld[1])/2)

{

collision=true;

}

else

{

collision=false;

}

collision_=collision;

11

2.1. COLLISIONS IN SOLIDPARTICLE CHAPTER 2. TUTORIAL: PARTICLE COLLISIONS

U0_=lU[0];

}

Also, make sure to add #include "vector.H" to the list of included files. The above function
checks if the two particles are in the same cell. Lists of particle cell, diameter, velocity and position
are created and corresponding values are assigned in the following for-loop. In the if-statement
we check if the collision requirements are satisfied. At the end we save the velocity of the first
particle for the current time step, which will be used to calculate new values after collision. In
collidingSolidParticleCloud.H, add

bool collision_;

vector U0_;

to the private member data, and

void checkCell();

bool collision(){return collision_;};

inline vector U0(){return U0_;};

to public member functions.

2.1.4 Velocity change upon collision

In the solidParticle class the particles are collected in what is called a cloud, similar to a spray in
the dieselSpray class. This cloud, here declared as particles is of the collidingSolidParticleCloud
class. In order to get the particles in the cloud to move, we have the member function
Foam::collidingSolidParticleCloud::move(const dimensionedVector& g). This function, in
turn, uses another move function located in the collidingSolidParticle class. This is where the
velocity of the particle is changed, and here the expressions for the new velocity after a collision will
be inserted. We need to add a substantial piece of code. In collidingSolidParticle.C replace

U_ = (U_ + dt*(Dc*Uc + (1.0 - rhoc/rhop)*td.g()))/(1.0 + dt*Dc);

with

scalar e = td.spc().e(); //Restitution coefficient

scalar m = rhop*d_*d_*d_*mathematicalConstant::pi*4.0/3.0; //Particle mass

bool checkcoll=td.spc().collision();

//if(checkcoll){Info<<"Particles collide!"<<endl;}

vector V0=td.spc().U0(); //OLD velocity of particle 1

scalar Jx = -(1.0+e)*V0.x()*m*m/(2.0*m); //Impulsive force x-comp

scalar Jy = -2.0/7.0*V0.y()*m*m/(2.0*m); //Impulsive force y-comp

if(ID_==0 && checkcoll) //Collision for particle 1

{

U_.x()=V0.x()+Jx/m;

U_.y()=V0.y()+Jy/m;

U_.z()=0.0;

}

if(ID_==1 && checkcoll) //Collision for particle 2

{

U_.x() = -Jx/m;

U_.y() = -Jy/m;

U_.z() = 0.0;

}

12

2.1. COLLISIONS IN SOLIDPARTICLE CHAPTER 2. TUTORIAL: PARTICLE COLLISIONS

//If no collision

U_ = (U_ + dt*(Dc*Uc + (1.0 - rhoc/rhop)*td.g()))/(1.0 + dt*Dc);

The restitution coefficient is defined, particle mass is computed from density and diameter, occur-
rence of collision is checked and the velocity for the first particle is assigned variable V0. In the next
section we calculate the new velocities for the particles. This is why we need V0. The ID_ variable
is used to distinguish between the two particles and is specified in a dictionary in the 0 directory
of the case (see section 2.1.5). This is a rather complex way of keeping track of both particles, but
was found to be necessary. If/when expanding the code to apply for more general cases with large
amounts of particles, this needs to be taken care of. In addition to the changes in the .C file, we also
need some additional lines in collidingSolidParticle.H and collidingSolidParticleIO.C.
Add

//- Particle ID

scalar ID_;

after vector U_; in the private member data in collidingSolidParticle.H.

In collidingSolidParticleIO.C add

IOField<scalar> ID(c.fieldIOobject("ID"));

c.checkFieldIOobject(c, ID);

after c.checkFieldIOobject(c, d); and

p.ID_ = ID[i];

after p.U_ = U[i]; in the readFields function.
Similarly, add

IOField<scalar> ID(c.fieldIOobject("ID"), np);

after IOField<vector> U(c.fieldIOobject("U"), np); and

ID[i] = p.ID_;

after U[i] = p.U_; and

ID.write();

after U.write(); in the writeFields function.
The last step is to call the checkcell function from collidingSolidParticleFoam.C. Before
particles.move(g); add

particles.checkCell();

Compile again by typing wmake. Now you should have a working solver collidingSolidParticleFoam.
It is now time to set up a case and make some particles collide.

2.1.5 Creating the case

We will make some changes to the box case supplied. First change the mesh parameters . In
constant/polyMesh/blockMeshDict change the blocking to

hex (0 1 2 3 4 5 6 7) (3 3 3) simpleGrading (1 1 1)

Run blockMesh to get a new mesh. In 0/lagrangian/defaultCloud/ we have files for particle
diameter as well as particle initial positions and velocities. We need to add a file for particle IDs.
Copy the diameter file

13

2.1. COLLISIONS IN SOLIDPARTICLE CHAPTER 2. TUTORIAL: PARTICLE COLLISIONS

cp d ID

and change it’s context to

FoamFile

{

version 2.0;

format ascii;

class scalarField;

location "0";

object ID;

}

// * //

2(0 1)

// *** //

In the U file, change the velocities to 2((1.0 0 0) (-1.0 0 0)). In positions, set the coordinates
to

2((1e-2 9e-2 0.05) 15 (7e-2 9e-2 0.05) 16)

What is set is the x, y and z coordinate of the two particles, as well as specifying which cell they
are in (in this case 72). The values above can of course be set to whatever you want, but this will
show a nice collision.

2.1.6 Running the case

While in the box directory, run the case by typing

collidingSolidParticleFoam >log\

To post process, type

foamToVTK

paraview

Load by clicking File>Load State>baseState.pvsm. The particle ID, described in section 2.1.4,
is helpful in post-processing. In the Display tab for Glyph1 choose to color the glyphs by ID, see
Figure 2.1. This will let us distinguish between the two particles. Change the glyph type to Cone

in order to see the direction of the particles. Hitting the play button will start the animation of the
two particles.

14

2.1. COLLISIONS IN SOLIDPARTICLE CHAPTER 2. TUTORIAL: PARTICLE COLLISIONS

Figure 2.1: Color particles by ID

2.1.7 Issues and recommendations

Examining the collision closely in paraview, it can be seen that the colliding particles change their
position before the new velocities have an effect, see figure 2.2. The velocities are calculated according
to the collision model, but the new positions of the particles are calculated using previous values.
In the figure it is shown that in the time step after the collision occurs, the direction of the cones
are in the direction of the new velocity vectors, but in the wrong coordinates. In the following time
step, however, the particles follow the correct path. As a consequence of this error, it is possible for
two particles that have recently collided, to do so again in the next few time steps (almost happens
in the third step after collision in figure 2.2) , which would not be possible if the velocity change
was instantaneous. For a more accurate model this needs to be sorted out. As mentioned before,

Figure 2.2: Lag in velocity switch after collision

the solver applied in this tutorial only works for two particles. If a greater number of particles is
desired, the way of hard coding all particle parameters is not sustainable. The collision check used
in collidingSolidParticleCloud.C needs to be looped for all particles instead of comparing only
two. In collidingSolidParticle.C the velocities are computed depending on the particle ID. A
more general code for this needs to be written, since now we only check if the ID is 0 or 1. Something
similar to the structure of the collision models in dieselSpray should be possible. The collision model

15

2.1. COLLISIONS IN SOLIDPARTICLE CHAPTER 2. TUTORIAL: PARTICLE COLLISIONS

applied in this tutorial requires the time step to be small, since collision conditions are checked only
for the exact time step values and not for the duration of the time step, as in the trajectory model.
This could be taken care of by implementing a similar expression.

16

Bibliography

[1] A.A. Amsden, P.J. O’Rourke, T.D. Butler KIVA-II: A Computer Program for Chemically Reac-
tive Flows with Sprays. Los Alamos, New Mexico, 1989.

[2] N. Nordin Complex chemistry modeling of diesel spraycombustion. Dept. of Thermo and Fluid
Dynamics, Chalmers University of Technology, Göteborg, 2001.

[3] ERCOFTAC The Best Practice Guidelines for Computational Fluid Dynamics of turbulent dis-
persed multiphase flows, 2008

17

	Droplet collisions in dieselSpray
	Introduction
	Collisions in dieselSpray
	Selecting collision model
	The O'Rourke collision model
	The trajectory collision model

	Tutorial: Particle collisions
	Collisions in solidParticle
	The new solid particle collision model
	Creating collidingSolidParticleFoam
	Detecting collisions
	Velocity change upon collision
	Creating the case
	Running the case
	Issues and recommendations

