
CHALMERS UNIVERSITY OF TECHNOLOGY

DEPARTMENT OF APPLIED MECHANICS

DIVISION OF FLUID DYNAMICS

CFD WITH OPENSOURCE SOFTWARE, ASSIGNMENT 3

Tutorial - shallowWaterFoam

Developed for OpenFOAM-1.7.x

Author:
JOHAN PILQVIST

Peer reviewed by:
FIRSTNAME LASTNAME

HÅKAN NILSSON

October 17, 2010

JOHAN PILQVIST, MPAME-2, CHALMERS UNIVERSITY OF TECHNOLOGY 1

Introduction

• This tutorial will aim towards explaining the fundamentals of the solver shal-
lowWaterFoam. The main focus will be to analyze the code functionality and the
implementation of the shallow water equations.

• To give some context to the code functionality we will follow the standard case
squareBump

JOHAN PILQVIST, MPAME-2, CHALMERS UNIVERSITY OF TECHNOLOGY 2

The shallow water equations
The shallow water equations are a set of differential equations that describe the mo-
tion of an incompressible fluid within a domain whose depth is considered to be shal-
low compared with the radius of the Earth.

Assuming that the fluid is incompressible and that the effects of vertical shear of
the horizontal velocity is negligble, the equations can be derived by depth-integrating
the continuity and Navier-Stokes equations.

JOHAN PILQVIST, MPAME-2, CHALMERS UNIVERSITY OF TECHNOLOGY 3

The shallow water equations
The momentum and continuity equations for the shallow water equations read

∂

∂t
(hu) +∇ · (huTu) + f × hu = −|g|h∇(h + h0) + τw − τ b (1)

∂

∂t
(h + h0) +∇ · (hu) = 0 (2)

where

• h is the mean surface height,

• u is the velocity vector,

• f = (2Ω · ĝ)ĝ is the Coriolis force (depending on the angular rotation rate of the
Earth, Ω, and ĝ being the normal vector of gravity),

• h0 is the deviation from the mean surface height and

• τw and τ b are the wind and bottom stresses respectively.

JOHAN PILQVIST, MPAME-2, CHALMERS UNIVERSITY OF TECHNOLOGY 4

The shallow water equations
In shallowWaterFoam, the wind and bottom stresses are assumed to be zero. Also,
the surface velocity flux is defined as

φv = φ/h = {φ = hu · n̂} = u · n̂ (3)

where n̂ is the cell face area vector. Equation 1 then reduces to

∂

∂t
(hu) +∇ · (hφvu) + f × hu = −|g|h∇(h + h0) (4)

Equations 4 are the equations that are solved in shallowWaterFoam.

JOHAN PILQVIST, MPAME-2, CHALMERS UNIVERSITY OF TECHNOLOGY 5

Running a case
Now we are going to apply the shallowWaterFoam solver on the squareBump case
located in the tutorials folder. Before setting up this case, copy the entire folder from
the tutorials section into your own run directory;

cd $FOAM_RUN
cp -r $FOAM_TUTORIALS/incompressible/shallowWaterFoam/squareBump .
cd squareBump

JOHAN PILQVIST, MPAME-2, CHALMERS UNIVERSITY OF TECHNOLOGY 6

Geometry

Figure 1: Geometry of the shallowWaterFoam tutorial case squareBump.

The geometry in the squareBump case consists of a single hexahedron block with a
1× 1 meter base and a depth of 0.1 meter (Figure 1).

JOHAN PILQVIST, MPAME-2, CHALMERS UNIVERSITY OF TECHNOLOGY 7

Meshing
To create a mesh we use the command

blockMesh

This generates a mesh following the descriptions in the dictionary blockMeshDict
located in the subdirectory constant/polyMesh.

Figure 2: The default mesh.

From this file we can conclude that

• the mesh is to be built up by a single hexahe-
dron block of 20× 20 cells

• the mesh is to be axially equidistant.

blockMeshDict also divides the boundary areas of
the domain into different patches. These are later
used in order to define the boundaries in the file
boundary, which is also located in the subdirec-
tory constant/polyMesh. The mesh could now be
viewed in ParaView and it will look as in Figure 2.

JOHAN PILQVIST, MPAME-2, CHALMERS UNIVERSITY OF TECHNOLOGY 8

Initial and boundary conditions

Figure 3: Visualization of the initial velocity
vector field, u = (0.1 0 0) m/s, and the non-
uniform initial surface height (denoted by dif-
ferent shades of gray).

In squareBump there are four initial condi-
tions that need to be defined;

• the mean surface height h,

• the deviation from the mean surface
height h0,

• the free-surface height htotal(= h+h0) and

• the velocity vector field u.

The initial velocity vector field is uniformly
distributed from the far left and onto the in-
ternal field of the domain, with a magnitude
of 0.1 m/s. Moreover, the four midmost cells
has an initial mean surface height of 0.009

meters (the darker square in the middle of
Figure 3) simulating a quadratic obstacle, or
a square bump.

JOHAN PILQVIST, MPAME-2, CHALMERS UNIVERSITY OF TECHNOLOGY 9

Initial and boundary conditions

• htotal is given a uniform value of 0.01 m.

• Since h is not uniformly distributed, but htotal is, the equality htotal = h + h0 then
calls for h0 to balance htotal. To do this h0 is given the value 0 for all cells except the
four midmost ones, using a non-uniform list of scalars (similar to the declaration
of h).

The initial conditions related to the actual case should all be located in the subdirec-
tory 0. Unfortunately though, for some reason the file h0 is by default located in the
wrong subdirectory, namely constant. To correct this mistake we need to move this
file to the correct location (i.e. the subdirectory 0). This is done using the following
command;

mv constant/h0 0/

JOHAN PILQVIST, MPAME-2, CHALMERS UNIVERSITY OF TECHNOLOGY 10

Initial and boundary conditions
The point/cell values of the initial conditions now need to be applied onto the mesh
as fields. This is done using the utility setFields, simply by typing

setFields

The dictionary for this utility, setFieldsDict, is located in the sub-directory system.
Worth noting is that had we not moved the file h0 to the correct directory, this

command could not have been executed. We would instead have received an error
message stating that setFields.C was unable to locate the file h0.

JOHAN PILQVIST, MPAME-2, CHALMERS UNIVERSITY OF TECHNOLOGY 11

Physical properties
The shallow water equations are dependent of the gravitational force and the rotation
of the Earth. These physical properties are defined in the file gravitationalProperties
located in the subfolder constant.

From this file we conduct that

• the gravitational force g = 9.81 m/s2

• the angular rotation rate of the Earth Ω = 7.292 · 10−5 s−1.

JOHAN PILQVIST, MPAME-2, CHALMERS UNIVERSITY OF TECHNOLOGY 12

Controlling the simulation
Before running a case we need to set some preferences for controlling the simulation
process, as well as the output of the results. These settings are done in the files located
in the subfolder system.

From controlDict we can, for example, deduce that

• the squareBump case is to be simulated from 0 to 100 seconds (remember that we
have indeed defined all our initial conditions for t = 0 s, i.e. in the 0 directory).

• the timestep, ∆t, is 0.1 second.

• the writeInterval is set to 1, meaning that we will write to our results every one
seconds. Hence, we will solve for a thousand timesteps of which we will save the
data for every tenth timestep.

JOHAN PILQVIST, MPAME-2, CHALMERS UNIVERSITY OF TECHNOLOGY 13

Controlling the simulation
From fvSchemes we can see that

• the time discretization is done using Crank-Nicholson. It is however done using a
θ value of 0.9, meaning that it is very close to being fully implicit.

• the divergence scheme is explicitly specified.

From fvSolution we can see what types of solver algorithms that are used to solve the
different equation systems. Furthermore, it includes some input arguments to the
PISO controls;

Table 1: The input arguments to the PISO loop defined in fvSolution.

PISO argument Value Description
nOuterCorrectors 3 Input value to the outer for loop solving the en-

tire equation system
nCorrectors 1 Input value to the correction loop for φ (i.e. the

face flux field)
nNonOrthogonalCorrectors 0 Input value to the correction loop for h (i.e. the

mean surface height)
momentumPredictor yes Activation of momentum predictor

JOHAN PILQVIST, MPAME-2, CHALMERS UNIVERSITY OF TECHNOLOGY 14

Running the simulation
Now the case has been thoroughly setup and is ready to be solved. Go to the terminal
prompt and type

shallowWaterFoam 2>&1 | tee log

JOHAN PILQVIST, MPAME-2, CHALMERS UNIVERSITY OF TECHNOLOGY 15

Post-processing
To post-process the case, open ParaView;

paraFoam

Some observations:

• In the beginning the velocity is largely influenced by the differences in surface
height and continuity forces the flow to disrupt the uniform flow conditions set for
t = 0 s.

• The coupling between u and h in the momentum equations causes the flow to
initiate a wave motion.

• As time passes, the flow is decelerated and the wave motion consequently fades
out.

JOHAN PILQVIST, MPAME-2, CHALMERS UNIVERSITY OF TECHNOLOGY 16

The solver
The path to the solver is

$FOAM_APP/solvers/incompressible/shallowWaterFoam/shallowWaterFoam.C

The solver starts off with inclusion of fvCFD.H, which subsequently contains even
more inclusions. These are needed in order to define and/or declare different classes,
types, functions and variables used in shallowWaterFoam.C and its subfiles.

JOHAN PILQVIST, MPAME-2, CHALMERS UNIVERSITY OF TECHNOLOGY 17

The solver
The first function main also starts off with some inclusions;

• setRootCase.H makes sure that shallowWaterFoam is executed in a valid direc-
tory. If not, it returns the message ”FOAM FATAL IO ERROR”.

• createTime.H defines the time properties according to the settings in the control-
Dict file.

• createMesh.H reads the mesh generated by blockMesh for which the equations
are to be solved.

• readGravitationalAcceleration.H reads the gravitational constant, g, and the an-
gular rotation rate of the Earth, Ω, to later be used in the equations.

• createFields.H reads the initial values for the different scalar and vector fields
(e.g. h, u etc.) defined in the current case. It also calculates the Coriolis force and
names it F.

JOHAN PILQVIST, MPAME-2, CHALMERS UNIVERSITY OF TECHNOLOGY 18

The solver
The inclusion of CourantNo.H in the beginning of the while loop is needed to calcu-
late the Courant (or CFL) number used to evaluate the time step. Since we ran the
squareBump case using the command

shallowWaterFoam 2>&1 | tee log

we can easily confirm that CFL ≤ 1 at all times by having a look in the file log.

The PISO arguments are read into the solver code via the inclusion of readPISOCon-
trols.H. Through this file some of the arguments experience a slight change of name,
or rather become abbreviated. Still, they are easily recognized in the solver code as

• nOuterCorr,

• nCorr and

• nNonOrthCorr.

JOHAN PILQVIST, MPAME-2, CHALMERS UNIVERSITY OF TECHNOLOGY 19

The solver
Some observations about the PISO controls:

• the momentum equation system is solved three times for each time step

• the correction of φ and h is done once every time the momentum equation system
is being solved.

What may be noted is that the for loop concerning the non-orthogonal grids, i.e

for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)

will indeed be executed even though nNonOrthogonalCorrectors was given the value
0 in the PISO controls.

The case uses momentumPredictor;

• usually incorporated to generate a good initial guess for the PISO loop in order to
speed up the convergence.

• actually slows down the default squareBump case.

JOHAN PILQVIST, MPAME-2, CHALMERS UNIVERSITY OF TECHNOLOGY 20

The solver
The solver shallowWaterFoam has been written so that it allows for the user to dis-
regard the rotation of the Earth. Since rotating was set to true in gravitationalProp-
erties, the momentum equations were solved in their entirety (i.e. also accounting for
the Earth’s rotation).

The left-hand side1 of the momentum equation system (named hUEqn in the code)
is defined as

fvVectorMatrix hUEqn
(

fvm::ddt(hU)
+ fvm::div(phiv, hU)

);

where ddt denotes the time-derivative ∂/∂t and div denotes the divergence (i.e. ∇·).
The operators ddt and div use the discretization schemes that were defined in fvSchemes.

1Except the Coriolis part which, as previously mentioned, is optional to take into consideration

JOHAN PILQVIST, MPAME-2, CHALMERS UNIVERSITY OF TECHNOLOGY 21

The solver
As an attempt to get faster convergence, the shallowWaterFoam solver uses under-
relaxation to solve the hU equation system. This is done using the command

hUEqn.relax();

The full hU equation system is now defined and solved as follows (provided that the
rotation of the Earth is accounted for);

hUEqn + (F ˆ hU) == -magg*h*fvc::grad(h + h0)

where F is the Coriolis force, magg denotes |g| and grad denotes the gradient operator
(∇). Just as ddt and div the operator grad uses the discretization scheme defined in
fvSchemes.

