
Chalmers University of Technology

Department of Applied Mechanics

Division of Fluid Dynamics

CFD with OpenSource software, assignment 3

Tutorial - shallowWaterFoam

Developed for OpenFOAM-1.7.x

Author:
Johan Pilqvist

Peer reviewed by:
Patrik Andersson

Jelena Andric

November 1, 2010

Contents

1 shallowWaterFoam 2
1.1 Introduction . 2
1.2 The shallow water equations . 2
1.3 Running the squareBump case . 3

1.3.1 Meshing . 3
1.3.2 Boundary and initial conditions . 5
1.3.3 Physical properties . 9
1.3.4 Controlling the simulation . 9
1.3.5 Running the simulation . 12

1.4 Post-processing . 13
1.5 The solver . 16

1.5.1 Solving the equations . 17

A shallowWaterFoam.C 22

1

Chapter 1

shallowWaterFoam

1.1 Introduction

This tutorial aims towards explaining the fundamentals of the solver shallowWaterFoam. The main
focus is to analyze the code functionality and the implementation of the shallow water equations.
Also, to give some context to the code functionality, the standard case squareBump is followed and
thoroughly analyzed.

1.2 The shallow water equations

The shallow water equations are a set of differential equations that describe the motion of an incom-
pressible fluid within a domain whose depth is considered to be shallow compared with the radius
of the Earth.

Assuming that the fluid is incompressible and that the effects of vertical shear of the horizontal
velocity is negligble, the equations can be derived by depth-integrating1 the continuity and Navier-
Stokes equations. Depth-integrating then allows the velocity normal to gravity to be removed from
the equations. The assumption of incompressibility is partly the reason for the name shallow water
equations, since water is more or less incompressible. The name also derives from the vertical shear
assumption, which is reasonable only if the fluid is ”shallow” [1].

The momentum and continuity equations for the shallow water equations read [2]

∂

∂t
(hu) +∇ · (huTu) + f × hu = −|g|h∇(h+ h0) + τw − τ b (1.1)

∂

∂t
(h+ h0) +∇ · (hu) = 0 (1.2)

where h is the mean surface height, u is the velocity vector, f = (2Ω · ĝ)ĝ is the Coriolis force
(depending on the angular rotation rate of the Earth, Ω, and ĝ being the normal vector of gravity),
h0 is the deviation from the mean surface height and τw and τ b are the wind and bottom stresses
respectively.

In shallowWaterFoam, the wind and bottom stresses are assumed to be zero. Also, the surface
velocity flux is defined as

φv = φ/h = {φ = hu · n̂} = u · n̂ (1.3)

where n̂ is the cell face area vector. Equation 1.1 then reduces to

∂

∂t
(hu) +∇ · (hφvu) + f × hu = −|g|h∇(h+ h0) (1.4)

These are the equations that are solved in shallowWaterFoam.

1i.e. integrating from the surface topography up to the free-surface

2

1.3. RUNNING THE SQUAREBUMP CASE CHAPTER 1. SHALLOWWATERFOAM

What may be noted is that although a vertical velocity term is not present in the shallow water
equations, this velocity component is not necessarily zero. Consider for example a change of depth
(i.e. the height of a free surface); then the vertical velocity could not possibly be zero. Once the
horizontal velocities and free surface displacements have been solved for, the vertical velocities may
be recovered using the equation of continuity.

1.3 Running the squareBump case

In this section we are going to apply the shallowWaterFoam solver on the squareBump case located
in the tutorials folder. Before setting up this case, copy the entire folder from the tutorials section
into your own run directory;

cd $FOAM_RUN

cp -r $FOAM_TUTORIALS/incompressible/shallowWaterFoam/squareBump .

cd squareBump

1.3.1 Meshing

(a) (b)

Figure 1.1: a) Geometry of the shallowWaterFoam tutorial case squareBump and b) the default
20 × 20 mesh.

The geometry in the squareBump case consists of a single hexahedron block with a 1 × 1 meter
base and a depth of 0.1 meter (Figure 1.1a). To create a mesh we use the command blockMesh
which generates a mesh following the descriptions in the dictionary blockMeshDict located in the
subdirectory constant/polyMesh. In the squareBump case this dictionary reads as follows:

convertToMeters 1;

vertices

(

3

1.3. RUNNING THE SQUAREBUMP CASE CHAPTER 1. SHALLOWWATERFOAM

(0 0 0)

(1 0 0)

(1 1 0)

(0 1 0)

(0 0 0.1)

(1 0 0.1)

(1 1 0.1)

(0 1 0.1)

);

blocks

(

hex (0 1 2 3 4 5 6 7) (20 20 1) simpleGrading (1 1 1)

);

edges

(

);

patches

(

patch sides

(

(3 7 6 2)

(1 5 4 0)

)

patch inlet

(

(0 4 7 3)

)

patch outlet

(

(2 6 5 1)

)

empty frontAndBack

(

(0 3 2 1)

(4 5 6 7)

)

);

mergePatchPairs

(

);

From this file we can conclude that the mesh is to be built up by a single hexahedron block of
20×20 cells (Figure 1.1b). Also, the default mesh is axially equidistant, as indicated by the uniform
values of simpleGrading. Note that blockMeshDict also divides the boundary areas of the domain
into different patches. These are later used in order to define the boundaries in the file boundary,
which is also located in the subdirectory constant/polyMesh. Now, let’s generate the mesh by typing

blockMesh

4

1.3. RUNNING THE SQUAREBUMP CASE CHAPTER 1. SHALLOWWATERFOAM

1.3.2 Boundary and initial conditions

Figure 1.2: Visualization of the initial velocity vector field, u = (0.1 0 0) m/s, and the non-uniform
initial surface height (denoted by different shades of gray).

In squareBump there are four initial conditions that need to be defined; the mean surface height
h, the deviation from the mean surface height h0, the free-surface height htotal(= h + h0) and the
velocity vector field u. The initial velocity vector field is uniformly distributed from the far left and
onto the internal field of the domain, with a magnitude of 0.1 m/s. Moreover, the four midmost
cells has an initial mean surface height of 0.009 meters (the darker square in the middle of Figure
1.2) simulating a quadratic obstacle, or a square bump.

The initial conditions related to the actual case should all be located in the subdirectory 0. Unfor-
tunately, for some reason the file h0 is by default located in the wrong subdirectory, namely constant.
To correct this mistake we need to move this file to the correct location (i.e. the subdirectory 0).
This is done using the following command;

mv constant/h0 0/

Below, the contents of U (followed by h, hTotal and h0) have been included to show how the initial
conditions are defined in the code.

dimensions [0 1 -1 0 0 0 0];

internalField uniform (0.1 0 0);

boundaryField

{

sides

{

type slip;

}

inlet

{

5

1.3. RUNNING THE SQUAREBUMP CASE CHAPTER 1. SHALLOWWATERFOAM

type fixedValue;

value uniform (0.1 0 0);

}

outlet

{

type zeroGradient;

}

frontAndBack

{

type empty;

}

}

We can see that the dimension for U is set as m/s. Since U belongs to the class volVectorField the
values for U must all be given as vectors. As indicated in Figure 1.2, the internal field is set to have
an initial velocity of (0.1 0 0) m/s (i.e. only velocity in the x-direction). The four boundary fields to
consider in this case are (as previously mentioned) those defined in boundary, i.e. sides, inlet, outlet
and frontAndBack. As can be seen the sides boundary is set as slip. This is because the flow is to be
considered irrotational (or as a potential flow) without any boundary layers on the sides. Moreover,
the inlet is given the same initial velocity as the internal field, the outlet is given a homogeneous
Neumann condition defined as zeroGradient and the frontAndBack boundary is set as empty.

The code implementation in h is somewhat more troublesome, since the mean surface height is
not entirely homogeneous throughout the domain (c.f. Figure 1.2). Thus the value for h must be
explicitly defined for each cell. This is done using a non-uniform list of scalar values.

dimensions [0 1 0 0 0 0 0];

internalField nonuniform List<scalar>

400

(

inside these parantheses the mean surface heights for all internal cells

are declared.

)

;

boundaryField

{

sides

{

type zeroGradient;

}

inlet

{

type zeroGradient;

}

outlet

{

type fixedValue;

value uniform 0.01;

}

frontAndBack

{

type empty;

6

1.3. RUNNING THE SQUAREBUMP CASE CHAPTER 1. SHALLOWWATERFOAM

}

}

The free-surface height, htotal, is simply set to 0.1 meter throughout the entire domain using the
command uniform.

dimensions [0 1 0 0 0 0 0];

internalField uniform 0.01;

boundaryField

{

sides

{

type calculated;

value uniform 0.01;

}

inlet

{

type calculated;

value uniform 0.01;

}

outlet

{

type calculated;

value uniform 0.01;

}

frontAndBack

{

type empty;

}

}

Since h is not uniformly distributed, but htotal is, the equality htotal = h + h0 then calls for h0 to
balance htotal. To do this, h0 is given the value 0 for all cells except the four midmost ones, using a
non-uniform list of scalars (similar to the declaration of h).

dimensions [0 1 0 0 0 0 0];

internalField nonuniform List<scalar>

400

(

inside these parantheses the deviation from the mean surface height for all

internal cells are declared.

)

;

boundaryField

{

sides

{

type zeroGradient;

7

1.3. RUNNING THE SQUAREBUMP CASE CHAPTER 1. SHALLOWWATERFOAM

}

inlet

{

type zeroGradient;

}

outlet

{

type zeroGradient;

}

frontAndBack

{

type empty;

}

}

Now that the point/cell values of the initial conditions have been defined, we also need to apply them
onto the mesh as fields. This is done using the utility setFields. This utility requires a dictionary,
setFieldsDict, which should be located in the sub-directory system. In this case the contents of this
dictionary reads

defaultFieldValues

(

volScalarFieldValue h0 0

volScalarFieldValue h 0.01

volVectorFieldValue U (0.1 0 0)

);

regions

(

boxToCell

{

box (0.45 0.45 0) (0.55 0.55 0.1);

fieldValues

(

volScalarFieldValue h0 0.001

volScalarFieldValue h 0.009

);

}

);

Now, to execute the setFields utility, simply type

setFields

Worth noting is that had the file h0 not been moved to the correct directory, this command could
not have been executed. Instead, an error message would have been received stating that setFields.C
was unable to locate the file h0.

8

1.3. RUNNING THE SQUAREBUMP CASE CHAPTER 1. SHALLOWWATERFOAM

1.3.3 Physical properties

As can be seen in equation 1.1, the shallow water equations are dependent of the gravitational force
and the rotation of the Earth. These physical properties are defined in the file gravitationalProperties
located in the subfolder constant. From this file we conduct that the gravitational force g = 9.81
m/s2 and that the angular rotation rate of the Earth Ω = 7.292 · 10−5 s−1.

1.3.4 Controlling the simulation

Before running a case we need to set some preferences for controlling the simulation and calculation
process, as well as the output of the results. These settings are done in the files located in the
subfolder system. Let us first have a look in the file controlDict.

application shallowWaterFoam;

startFrom startTime;

startTime 0;

stopAt endTime;

endTime 100;

deltaT 0.1;

writeControl runTime;

writeInterval 1;

purgeWrite 0;

writeFormat ascii;

writePrecision 6;

writeCompression uncompressed;

timeFormat general;

timePrecision 6;

runTimeModifiable no;

We can see that the squareBump case is to be simulated from 0 to 100 seconds (remember that we
have indeed defined all our initial conditions for t = 0 s, i.e. in the 0 directory) with a timestep, ∆t,
of 0.1 second. Also, the writeInterval is set to 1 s, meaning that we will write to our results every
one seconds. Hence, we will solve for a thousand timesteps of which we will save the data for every
tenth timestep.

The choice of timestep should be based on a CFL number that is low enough to assure conver-
gence (rule of thumb is to use CFL ≤ 1). The CFL number is defined as

CFL =
|u|∆t
∆x

(1.5)

9

1.3. RUNNING THE SQUAREBUMP CASE CHAPTER 1. SHALLOWWATERFOAM

where ∆x is the side length of a cell. The condition CFL ≤ 1 must be valid everywhere and since
we in this case have a uniform initial velocity field, |u| = 0.1 m/s, and a uniform mesh, ∆x = 0.05
m, this means that for the first time step

∆t ≤ ∆x

|u|
= 0.5s (1.6)

Thus, the choice of ∆t = 0.1 s should be more than sufficient since the magnitude of the velocity is
not likely to multiply by a factor of 5.

Now, let us also have a look inside fvSchemes to see what types of discretization schemes are to
be used in the squareBump case.

ddtSchemes

{

default CrankNicholson 0.9;

}

gradSchemes

{

default Gauss linear;

}

divSchemes

{

default none;

div(phiv,hU) Gauss linear;

}

laplacianSchemes

{

default Gauss linear uncorrected;

}

interpolationSchemes

{

default linear;

}

snGradSchemes

{

default uncorrected;

}

fluxRequired

{

h;

}

Firstly, we may note that the time discretization is set to Crank-Nicholson. It is, however, given a
value of 0.9, meaning that it is not fully Crank-Nicholson2. We may also notice that the divergence
scheme is explicitly specified.

2A value of 1 would give fully Crank-Nicholson.

10

1.3. RUNNING THE SQUAREBUMP CASE CHAPTER 1. SHALLOWWATERFOAM

Finally, let us analyze the solution procedures by having a look in fvSolution.

solvers

{

h

{

solver PCG;

preconditioner DIC;

tolerance 1e-6;

relTol 0.01;

};

hFinal

{

solver PCG;

preconditioner DIC;

tolerance 1e-8;

relTol 0;

};

hU

{

solver PBiCG;

preconditioner DILU;

tolerance 1e-6;

relTol 0;

}

}

PISO

{

nOuterCorrectors 3;

nCorrectors 1;

nNonOrthogonalCorrectors 0;

momentumPredictor yes;

}

The solver to be used for the h and hFinal (more about this property in section 1.5.1) equation
systems is the conjugate gradient solver PCG, using the preconditioner DIC (Diagonal incomplete-
Cholesky, used for symmetric matrices). The hU equation system (i.e. equations 1.4) is to be solved
using the bi-conjugate gradient solver PBiCG with the preconditoner DILU (Diagonal incomplete-LU,
used for asymmetric matrices) [3]. Finally, fvSolution also includes some input arguments to the piso
controls;

• nOuterCorrectors

• nCorrectors

• nNonOrthogonalCorrectors

• momentumPredictor

The implementation of these arguments and the piso algorithm are further discussed in section
1.5.1.

11

1.3. RUNNING THE SQUAREBUMP CASE CHAPTER 1. SHALLOWWATERFOAM

1.3.5 Running the simulation

Now the case has been thoroughly setup and is ready to be solved. Go to the terminal prompt and
type (make sure you are located in the squareBump folder)

shallowWaterFoam

Sometimes you might want to save the output of the calculation process in a log file, so that you
can open it and read it later on. To do this, and at the same time be able to monitor the process in
the terminal window, you can type

shallowWaterFoam 2>&1 | tee log

This way the same output that is written to the terminal window is simultaneously written to the
file log which will be located in the current folder.

12

1.4. POST-PROCESSING CHAPTER 1. SHALLOWWATERFOAM

1.4 Post-processing

Figure 1.3: The outlines of Pipeline Browser and Object Inspector in ParaView.

The results of the simulations can be viewed using ParaView. Go to the terminal window and type

paraFoam

In the window Pipeline Browser you can see the name of the case being post-processed (in this case
squareBump). Under the outline Object Inspector you can choose the variables you wish to import
for analysis. Let’s choose all the volume fields available and then click Apply (cf. Figure 1.3).
Let us first have a look at the distribution of the velocity. To visualize this we simply choose U in
the display options (cf. Figure 1.4).

Figure 1.4: From the display options you can choose to view the velocity distribution U. In this
case we have chosen to visualize the interpolated velocity distribution and also to show the mesh
grid (Surface With Edges).

Figure 1.5 shows the velocity field at four different times. After 1 s, the velocity is largely influ-
enced by the differences in surface height and continuity forces the flow to disrupt the uniform flow

13

1.4. POST-PROCESSING CHAPTER 1. SHALLOWWATERFOAM

conditions set for t = 0 s. Also, the coupling between u and h in the momentum equations (eqs.
1.1) causes the flow to initiate a wave motion. As time passes, the flow is decelerated and the wave
motion consequently fades out (cf. Figure 1.6). Hence, the differences between, for example, 30 and
70 s in Figure 1.5 are quite small.

(a) (b)

(c) (d)

Figure 1.5: Velocity field after a) 1 s, b) 10 s, c) 30 s and d) 70 s.

14

1.4. POST-PROCESSING CHAPTER 1. SHALLOWWATERFOAM

Figure 1.6: Visualization of the wave motion (i.e. change of free-surface height, htotal) and how it
fades over time. Data plotted for cell number 25.

The plot in Figure 1.6 was created using Plot Selection Over Time from the menu Filters in ParaView.
The Selection in this case was the 25th cell (cf. Figure 1.7). To make a single cell selection, use the
Select Cells On tool from the menu bar (cf. Figure 1.8) and simply click on the cell3 of your choice.

Figure 1.7: Location of cell number 25.

Figure 1.8: The tool Select Cells On as seen from the menu bar.

3It is also possible to mark multiple cells

15

1.5. THE SOLVER CHAPTER 1. SHALLOWWATERFOAM

1.5 The solver

To start the analysis of the solver, let us have a look in its .C-file. The path to this file is

$FOAM_APP/solvers/incompressible/shallowWaterFoam/shallowWaterFoam.C

but for convenience its contents can also be seen in full in Appendix A.
The very first line in shallowWaterFoam.C reads

#include "fvCFD.H".

This type of command is used to treat the contents of the header file fvCFD.H as if they had instead
appeared at this point in the .C-file. In other words; instead of typing

#ifndef fvCFD_H

#define fvCFD_H

#include "parRun.H"

#include "Time.H"

#include "fvMesh.H"

#include "fvc.H"

#include "fvMatrices.H"

#include "fvm.H"

#include "linear.H"

#include "uniformDimensionedFields.H"

#include "calculatedFvPatchFields.H"

#include "fixedValueFvPatchFields.H"

#include "adjustPhi.H"

#include "findRefCell.H"

#include "mathematicalConstants.H"

#include "OSspecific.H"

#include "argList.H"

#include "timeSelector.H"

#ifndef namespaceFoam

#define namespaceFoam

using namespace Foam;

#endif

#endif

(i.e. the contents of fvCFD.H) in the beginning of shallowWaterFoam.C, we simply type

#include "fvCFD.H".

As can be seen, fvCFD.H does in turn include several other .H-files, of which most subsequently
include additional ones. All these inclusions are needed in order to define and/or declare different
classes, types, functions and variables used in shallowWaterFoam.C and its subfiles.

16

1.5. THE SOLVER CHAPTER 1. SHALLOWWATERFOAM

When all fundamental inclusions have been made, the solver executes the first function main,
which (if completed succesfully) returns the integer value 0 (see the last line of shallowWaterFoam.C).
As is the case for the .C-file itself, the main-function starts off with some inclusions;

• setRootCase.H makes sure that shallowWaterFoam is executed in a valid directory. If not, it
returns the message ”FOAM FATAL IO ERROR”.

• createTime.H defines the time properties according to the settings in the controlDict file.

• createMesh.H reads the mesh generated by blockMesh for which the equations are to be solved.

• readGravitationalAcceleration.H reads the gravitational constant, g, and the angular rotation
rate of the Earth, Ω, to later be used in the equations.

• createFields.H reads the initial values for the different scalar and vector fields (e.g. h, u etc.)
defined in the current case. It also calculates the Coriolis force and names it F.

1.5.1 Solving the equations

When the initial conditions, geometry, mesh and time properties have all been defined it is time to
start the iteration process to solve equations 1.4 (i.e. the velocity distribution, u, and the free-surface
height, htotal = h + h0). This is done using a while loop which runs over all the time steps defined
in controlDict. The shallowWaterFoam solver uses the piso algorithm. piso stands for Pressure
Implicit with Splitting of Operators and was originally a pressure-velocity calculation procedure
developed for non-iterative computation of unsteady compressible flows, using one predictor step
and two corrector steps. It has however been successfully adapted for the iterative solution of steady
state problems and may be seen as an extension of the simple algorithm [4].

The inclusion of CourantNo.H in the beginning of the while loop is needed to calculate the Courant
(or CFL, eq. 1.5) number used to evaluate the time step. Provided that the squareBump case was
run using the command

shallowWaterFoam 2>&1 | tee log

the reader could easily confirm that CFL ≤ 1 at all times, i.e. that the Courant number did not
exceed the value one at any time step, by having a look in the file log.

From fvSolution (section 1.3.4) we can recall the input arguments to the piso loop. For clarity,
these have also been tabulated in Table 1.1.

Table 1.1: The input arguments to the piso loop defined in fvSolution.

piso argument Value Description
nOuterCorrectors 3 Input value to the outer for loop solving the entire

equation system
nCorrectors 1 Input value to the correction loop for φ (i.e. the face

flux field)
nNonOrthogonalCorrectors 0 Input value to the correction loop for h (i.e. the

mean surface height)
momentumPredictor yes Activation of momentum predictor

The piso arguments are read into the solver code via the inclusion of readPISOControls.H. Through
this file some of the arguments experience a slight change of name, or rather become abbreviated.
Still, they are easily recognized in the solver code as nOuterCorr, nCorr and nNonOrthCorr.

By having a quick look at the conditions of the for loops in the solver code (Appendix A) and
Table 1.1, we can conclude that

17

1.5. THE SOLVER CHAPTER 1. SHALLOWWATERFOAM

• the hU equation system (i.e. equations 1.4) is solved three times for each time step

• the correction of φ and h is done once every time the hU equation system is being solved.

Hence, in shallowWaterFoam, the piso algorithm has been modified to use only one correction step
for the face flux field, φ, and the mean surface height, h. Instead it uses three outer correction steps
for the entire momentum equation system.

What may be noted is that the for loop concerning the non-orthogonal grids, i.e.

for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)

will indeed be executed even though nNonOrthogonalCorrectors was given the value 0 in the piso
controls. Moreover, the code within

if (momentumPredictor){}

will be executed since momentumPredictor was set to yes. This step is usually incorporated to
generate a good initial guess for the piso loop in order to speed up the convergence. This is not always
the case though. As a matter of fact, the squareBump case converges faster when momentumPredictor
is inactivated (i.e. set to no). This is because it is (in this case) actually more time-consuming to
execute the momentumPredictor-code than it is to have a less correct start guess4.

The reocurring condition

if (rotating)

means that the solver shallowWaterFoam has been written so that it allows for the user to disregard
the rotation of the Earth. Since rotating was set to true in gravitationalProperties, equations 1.4 were
solved in their entirety (i.e. also accounting for the Earth’s rotation). Setting rotating to false would
instead mean that the Coriolis force would be ignored.

The left-hand side5 of the momentum equation system (named hUEqn in the code) is defined as

fvVectorMatrix hUEqn

(

fvm::ddt(hU)

+ fvm::div(phiv, hU)

);

where ddt denotes the time-derivative ∂/∂t and div denotes the divergence (i.e. ∇·). The operators
ddt and div use the discretization schemes that were defined in fvSchemes.

As an attempt to get faster convergence, the shallowWaterFoam solver uses under-relaxation to
solve the hU equation system. This is done using the command

hUEqn.relax();

4The reader might verify this simply by setting momentumPredictor to no in fvSolution, re-run the case and compare
the final values for ClockTime.

5Except the Coriolis part which, as previously mentioned, is optional to take into consideration

18

1.5. THE SOLVER CHAPTER 1. SHALLOWWATERFOAM

The full hU equation system is now defined and solved as follows (provided that the rotation of the
Earth is accounted for);

hUEqn + (F ^ hU) == -magg*h*fvc::grad(h + h0)

where F is the Coriolis force, magg denotes |g| and grad denotes the gradient operator (∇). Just as
ddt and div the operator grad uses the discretization scheme defined in fvSchemes.

One part of the description section of shallowWaterFoam.C reads

If the geometry is 3D then it is assumed to be one layers of cells and the

component of the velocity normal to gravity is removed.

This corresponds well with the derivation of equations 1.1 and 1.2 in section 1.2, where depth
integration allowed the velocity normal to gravity to be removed. In the code, removing the velocity
normal to gravity is arranged by the reocurring lines

if (mesh.nGeometricD() == 3)

{

hU -= (gHat & hU)*gHat;

}

where the ”-=” operator means that the left-hand side is equal to the left-hand side minus the
right-hand side and gHat refers to ĝ (i.e. the normal vector of gravity).

Recall, once again from fvSolution (section 1.3.4), the distinction made between h and hFinal.
These are, in fact, both the same as h, with the slight difference that hFinal is the mean surface
height only for the third calculation at each time step. The distinction is probably made to allow
the tougher tolerance that is set for hFinal, i.e. the final calculation of h.

As aforementioned, φ and h are corrected once for every outer loop. The corrections of these
parameters are done within the piso loop in the code. For φ the correction implementation reads

surfaceScalarField hf = fvc::interpolate(h);

volScalarField rUA = 1.0/hUEqn.A();

surfaceScalarField ghrUAf = magg*fvc::interpolate(h*rUA);

surfaceScalarField phih0 = ghrUAf*mesh.magSf()*fvc::snGrad(h0);

if (rotating)

{

hU = rUA*(hUEqn.H() - (F ^ hU));

}

else

{

hU = rUA*hUEqn.H();

}

phi = (fvc::interpolate(hU) & mesh.Sf())

+ fvc::ddtPhiCorr(rUA, h, hU, phi)

- phih0;

19

1.5. THE SOLVER CHAPTER 1. SHALLOWWATERFOAM

where

• hf is the interpolated mean surface height,

• rUA is the reciprocals of the coefficient matrix for the hU equation system,

• ghrUAf is rUA times the magnitude of g and the interpolated mean surface height,

• phih0 is ghrUAf times the cell face area and the normal gradient of h0 (n · ∇h0) using the
corresponding discretization scheme defined in fvSchemes.

The correction implementation for h reads as follows

fvScalarMatrix hEqn

(

fvm::ddt(h)

+ fvc::div(phi)

- fvm::laplacian(ghrUAf, h)

);

if (ucorr < nOuterCorr-1 || corr < nCorr-1)

{

hEqn.solve();

}

else

{

hEqn.solve(mesh.solver(h.name() + "Final"));

}

if (nonOrth == nNonOrthCorr)

{

phi += hEqn.flux();

}

where laplacian denotes the laplace operator, ∆ = ∇2 = ∇ ·∇, which accordingly uses the dicretiza-
tion scheme defined in fvSchemes.

The corrected φ and h are finally implemented in the momentum equation via the command

hU.correctBoundaryConditions();

20

Bibliography

[1] D. A. Randall, “The Shallow Water Equations,” tech. rep., Department of Atmospheric Sci-
ence, Colorado State University, 2006. http://kiwi.atmos.colostate.edu/group/dave/pdf/
ShallowWater.pdf.

[2] Rutgers University, Institute of Marine and Coastal Sciences, “Shallow Water Equations.” http:

//marine.rutgers.edu/po/tests/soliton/eqs.php, October 2010.

[3] OpenCFD Ltd., “Solution and algoritm control.” http://www.openfoam.com/docs/user/

fvSolution.php, October 2010.

[4] H. K. Versteeg and W. Malalasekera, An Introduction to Computational Fluid Dynamics, the
finite volume method. Harlow, England: Pearson Education Limited, 2nd ed., 2007.

21

Appendix A

shallowWaterFoam.C

/*---*\

========= |

\\ / F ield | OpenFOAM: The Open Source CFD Toolbox

\\ / O peration |

\\ / A nd | Copyright (C) 1991-2010 OpenCFD Ltd.

\\/ M anipulation |

License

This file is part of OpenFOAM.

OpenFOAM is free software: you can redistribute it and/or modify it

under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

OpenFOAM is distributed in the hope that it will be useful, but WITHOUT

ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or

FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License

for more details.

You should have received a copy of the GNU General Public License

along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

Application

shallowWaterFoam

Description

Transient solver for inviscid shallow-water equations with rotation.

If the geometry is 3D then it is assumed to be one layers of cells and the

component of the velocity normal to gravity is removed.

---/

#include "fvCFD.H"

// * //

int main(int argc, char *argv[])

22

APPENDIX A. SHALLOWWATERFOAM.C

{

#include "setRootCase.H"

#include "createTime.H"

#include "createMesh.H"

#include "readGravitationalAcceleration.H"

#include "createFields.H"

// * //

Info<< "\nStarting time loop\n" << endl;

while (runTime.loop())

{

Info<< "\n Time = " << runTime.timeName() << nl << endl;

#include "readPISOControls.H"

#include "CourantNo.H"

for (int ucorr=0; ucorr<nOuterCorr; ucorr++)

{

surfaceScalarField phiv("phiv", phi/fvc::interpolate(h));

fvVectorMatrix hUEqn

(

fvm::ddt(hU)

+ fvm::div(phiv, hU)

);

hUEqn.relax();

if (momentumPredictor)

{

if (rotating)

{

solve(hUEqn + (F ^ hU) == -magg*h*fvc::grad(h + h0));

}

else

{

solve(hUEqn == -magg*h*fvc::grad(h + h0));

}

// Constrain the momentum to be in the geometry if 3D geometry

if (mesh.nGeometricD() == 3)

{

hU -= (gHat & hU)*gHat;

hU.correctBoundaryConditions();

}

}

// --- PISO loop

for (int corr=0; corr<nCorr; corr++)

{

surfaceScalarField hf = fvc::interpolate(h);

volScalarField rUA = 1.0/hUEqn.A();

23

APPENDIX A. SHALLOWWATERFOAM.C

surfaceScalarField ghrUAf = magg*fvc::interpolate(h*rUA);

surfaceScalarField phih0 = ghrUAf*mesh.magSf()*fvc::snGrad(h0);

if (rotating)

{

hU = rUA*(hUEqn.H() - (F ^ hU));

}

else

{

hU = rUA*hUEqn.H();

}

phi = (fvc::interpolate(hU) & mesh.Sf())

+ fvc::ddtPhiCorr(rUA, h, hU, phi)

- phih0;

for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)

{

fvScalarMatrix hEqn

(

fvm::ddt(h)

+ fvc::div(phi)

- fvm::laplacian(ghrUAf, h)

);

if (ucorr < nOuterCorr-1 || corr < nCorr-1)

{

hEqn.solve();

}

else

{

hEqn.solve(mesh.solver(h.name() + "Final"));

}

if (nonOrth == nNonOrthCorr)

{

phi += hEqn.flux();

}

}

hU -= rUA*h*magg*fvc::grad(h + h0);

// Constrain the momentum to be in the geometry if 3D geometry

if (mesh.nGeometricD() == 3)

{

hU -= (gHat & hU)*gHat;

}

hU.correctBoundaryConditions();

}

}

U == hU/h;

24

APPENDIX A. SHALLOWWATERFOAM.C

hTotal == h + h0;

runTime.write();

Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"

<< " ClockTime = " << runTime.elapsedClockTime() << " s"

<< nl << endl;

}

Info<< "End\n" << endl;

return 0;

}

// *** //

25

