CHALMERS C3SE
Solving PDEs with OpenFOAM

e The PDEs we wish to solve involve derivatives of tensor fields with
respect to time and space

e The PDEs must be discretized in time and space before we solve
them

e We will start by having a look at algebra of tensors in OpenFOAM
at a single point

e We will then have a look at how to generate tensor fields from
tensors

e Finally we will see how to discretize PDEs and how to set boundary
conditions using high-level coding in OpenFOAM

Hakan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics

CHALMERS C3SE
Basic tensor classes in OpenFOAM

e Pre-defined classes for tensors of rank 0-3, but may be extended indefinitely

Rank | Common name | Basic name | Access function
0 Scalar scalar
1 Vector vector | x(), y(), z0
2 Tensor tensor xx(), xy(), xz(), ...
Example:
11 12 13
Atensor T'= | 21 22 23 | is defined line-by-line:
31 32 33

tensor T(11, 12, 13, 21, 22, 23, 31, 32, 33);

Info << "Txz =" << T.xz() << endl;

Outputs to the screen:

Txz = 13

Hakan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics

CHALMERS @)D
Algebraic tensor operations in OpenFOAM

e Tensor operations operate on the entire tensor entity instead of a
series of operations on its components

e The OpenFOAM syntax closely mimics the syntax used in written mathematics,
using descriptive functions or symbolic operators

Examples:

Operation Comment Mathematical Description
description in OpenFOAM

Addition a+b a+b
Outer product Ranka,b>1 ab a*b
Inner product Ranka,b>1 a-b a&b
Cross product Ranka,b=1 axb a’"b
Operations exclusive to tensors of rank 2
Transpose T! T.T()
Determinant detT det(T)
Operations exclusive to scalars
Positive (boolean) s>0 pos(s)
Hyperbolic arc sine asinh s asinh(s)

Hakan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics

CHALMERS @)D

Examples of the use of some tensor classes

e In $FOAM APP/ t est we can find examples of the use of some classes.

e Tensor class examples:
run
cp -r $FOAM APP/ t est
cd test/tensor
wrake
t ensor Test >& | og

e Have a look inside t ensor Test . Cto see the high-level code.

e See also vect or, symnTensor Fi el d, spheri cal TensorField
and many other examples.

Hakan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics

CHALMERS @)D
Dimensional units in OpenFOAM

e OpenFOAM checks the dimensional consistency
Declaration of a tensor with dimensions:

di mensi onedTensor signa

(
"sigma",
di rensionSet(1, -1, -2, 0, 0, 0, 0),
tensor(1le6, 0, O, 0O, l1le6, 0O, 0, O, 1le6)

)

The values of dimensionSet correspond to the powers of each SI unit:

No. Property Unit Symbol
1 Mass kilogram kg
2 Length metre m
3 Time second s
4 Temperature Kelvin K
5 Quantity moles mol
6 Current ampere A

7 Luminous intensity candela cd
sigma then has the dimension [kg/ms?]

Hakan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics

CHALMERS @)D
Dimensional units in OpenFOAM

e Add the following to t ensor Test . C
Before mai n() :
#i ncl ude "di nensi onedTensor . H'
Before ret urn(0):

di nensi onedTensor si gna

(
"sigma",
di rensionSet(1, -1, -2, 0, 0, 0, 0),
tensor(1le6, 0, O, O, l1le6, 0O, 0, O, 1e6)
);

| nfo<< "Sigma: " << sigma << endl;
e Compile, run again, and you will get:
Sigma: sigma [1 -1 -2 000 0] (1e+06 0 0 O 1e+06 0 O O 1e+06)

You see that the object si gnma that belongs to the di mensi onedTensor class
contains both the name, the dimensions and values.

Hakan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics

CHALMERS @)D
Dimensional units in OpenFOAM

e Try some member functions of the di nensi onedTensor class:

| nfo<< "Sigma nane: " << signma.nane() << endl;
| nfo<< "Sigma di nensions: " << signa.dinensions() << endl;
| nfo<< "Sigma value: " << signa.value() << endl;

e You now also get:

Si gna nane: sigm
Sigma dinensions: [1 -1 -2 0 0 0 0]
Signa value: (1e+06 0 0 O 1e+06 O O O 1e+06)

e Extract one of the values:
| nfo<< "Sigma yy value: " << signa.value().yy() << endl;
Note here that the val ue() member function first converts the expression to a
t ensor, which has a yy() member function. The di nensi onedTensor class
does not have a yy() member function, so it is not possible to do si gma. yy() .

Hakan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics

CHALMERS C’SE
Construction of a tensor field in OpenFOAM

e A tensor field is a list of tensors

e The use of typedef in OpenFOAM yields readable type definitions:
scalarField, vectorField, tensorField, symmTensorField, ...

e Algebraic operations can be performed between different fields,

and between a field and a single tensor, e.g. Field U, scalar 2.0:
U=2.0%*TU;

e Add the following to t ensor Test :
Before mai n() :
#i nclude "tensorField. H
Before r et urn(0):

tensorField tf1(2, tensor::one);

| nfo<< "tfl: " << tfl << endl;
tf1[0] = tensor(1, 2, 3, 4, 5 6, 7, 8, 9);
| nfo<< "tfl: " << tfl << endl;

| nfo<< "2.0*xtfl: " << 2.0+xtf1l << endl;

Hakan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics

CHALMERS @)D
Discretization of a tensor field in OpenFOAM

e FVM (Finite Volume Method)
e No limitations on the number of faces bounding each cell
e No restriction on the alignment of each face

e The mesh class polyMesh can be used to construct a polyhedral
mesh using the minimum information required

e The fvMesh class extends the polyMesh class to include additional
data needed for the FV discretization (seet est / nesh)

e The geometricField class relates a tensor field to an fvMesh (can
also be typedef volField, surfaceField, pointField)

e A geometricField inherits all the tensor algebra of its correspond-
ing field, has dimension checking, and can be subjected to specific
discretization procedures

Hakan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics

CHALMERS C’SE

Examine an fvMesh

e Let us examine an f viMesh:
run
rm-rf cavity
cp -r $FOAM TUTORI ALS/ i nconpr essi bl e/ i coFoam cavity .
cd cavity
sed -1 s/"20 20 1"/"2 2 1"/ g constant/ pol yMesh/ bl ockMeshDi ct

bl ockMesh
e Run the t est/ nesh/ neshTest (first compile it!)

e C() gives the center of all cells and boundary faces.
V() gives the volume of all the cells.
Cf () gives the center of all the faces.

e Try also adding in neshTest . C, before r et ur n(0) :
| nfo<< nesh.C().internal Field()[1][1] << endl;
| nf o<< nesh. boundaryMesh()[0]. nane() << endl;

Hakan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics

CHALMERS C’SE

Examine a volScalarField

e Read a vol Scal ar Fi el d that corresponds to the nesh. Add in neshTest. C,
before r et ur n(0) :

vol Scal arField p

(
| Cobj ect
(
1] pll’
runTi me. ti meName(),
mesh,
| Qobj ect : : MUST_READ,
| Cobj ect:: AUTO WRI TE
)
nmesh
);
| nfo<< p << endl;
| nf o<< p. boundaryFi el d()[0] << endl;

Hakan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics

CHALMERS C3SE
Equation discretization in OpenFOAM

e Converts the PDEs into a set of linear algebraic equations, Ax=b, where x and b are volFields
(geometricFields). A is an fvMatrix, which is created by a discretization of a geometricField and

inherits the algebra of its corresponding field, and it supports many of the standard algebraic
matrix operations

e The fvm (Finite Volume Method) and fvc (Finite Volume Calculus) classes contain static func-
tions for the differential operators, and discretize any geometricField. fvm returns an fvMatrix,
and fvc returns a geometricField.

Examples:

Term description Mathematical expression fvm::/fve:: functions
Laplacian V- -I'Vo laplacian(Gamma,phi)
Time derivative 0¢/0t ddt(phi)

Opgp /0t ddt(rho, phi)
Convection V- (¥) div(psi, scheme)

V- (Yo) div(psi, phi, word)

div(psi, phi)

Source Jlo, Sp(rho, phi)

SuSp(rho, phi)
¢: vol<type>Field, p: scalar, volScalarField, ¢): surfaceScalarField

Hakan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics

CHALMERS C*SE

Example

The equation

%)—ij+v-¢z7—v-wﬁ:—vp

has the OpenFOAM representation

sol ve
(
fvm :ddt(rho, U
+ fvm :div(phi, U
- fvm :laplacian(mu, U)

- fvc::grad(p)

Hakan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics

CHALMERS C’SE

Example: laplacianFoam, the source code
Solves 0T /ot — V - kNT =0

#include "fvCFD.H' // Include the class definitions
int main(int argc, char =argv[])

| ncl ude "setRoot Case.H' // Set the correct path

i nclude "createTine.H' // Create the tine

i nclude "createMesh.H' // Create the nesh

i nclude "createFields.H' // Tenperature field T and diffusivity DT
while (runTinme.loop()) // Time |oop

{

| ncl ude "readSI MPLEControls. H' // Read solution controls

for (int nonOth=0; nonOth$<$=nNonOthCorr; nonOrth++)

T H HF H

{
solve(fvm:ddt(T) - fvm:laplacian(DT, T)); // Solve eq.
}
i nclude "wite.H // Wite out results at specified tine instances}

}
return O; // End with "ok’ signal

Hakan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics

CHALMERS C’SE

Example: laplacianFoam, discretization and boundary conditions

Find this in $FOAM TUTORI ALS/ basi ¢/ | apl aci anFoani f | ange
Discretization:
dictionary fvSchemes, read from file:

ddt Schenes
{
defaul t Eul er;
}
| apl aci anSchenes
{
def aul t none;
| apl aci an(DT, T) Gauss |linear corrected;
}

Boundary conditions:
Part of class volScalarField object T, read from file:

boundar yFi el d{
patchl{ type zeroG adi ent;}
patch2{ type fixedVal ue; value uniform 273;}}

Hakan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics

