
Chalmers University of Technology

CFD with OpenSource software 2010

Implementation of an actuator disk in
OpenFOAM

Developed for
OpenFOAM-
1.5-dev

Author:
Erik Svenning

Peer reviewed by:
Jelena Andric

Johan Magnusson

October 30, 2010

CONTENTS 1

Contents

1 Introduction 2

2 Theoretical background 2

3 Geometrical definition of an actuator disk 4

4 The fan boundary condition in OpenFOAM 5

5 Implementation of an actuator disk model 8
5.1 Requirements on the new model . 8
5.2 General model structure . 8
5.3 Modification of simpleFoam . 8
5.4 Implementation of an actuator disk class . 10
5.5 actuatorDiskExplicitForce.h . 13
5.6 actuatorDiskExplicitForce.cpp . 14
5.7 actuatorDiskExplicitForceSimpleFoam.C . 20
5.8 UEqn.H . 21
5.9 createFields.H . 22

6 Basic validation 22

7 Comparison with a case from the literature 28

8 Summary 34

A Proof of formulas for AxandAθ 34
A.1 Ax . 34
A.2 Aθ . 35

B Case files for the tunnel blockage case. 36
B.1 fvSolution . 36
B.2 blockMeshDict . 37

1 INTRODUCTION 2

1 Introduction

This tutorial shows how to implement an actuator disk in OpenFOAM. The background to the
problem is described and the fan boundary condition, which is similar to the present problem, is
reviewed. The implementation of an actuator disk is described in detail. Finally, the properties
of the new implementation are demonstrated and investigated.

2 Theoretical background

In many cases, the flow around a propeller, fan or turbine is of interest. Often it is not possible to
resolve the flow around the propeller exactly to an acceptable computational cost. An alternative
to resolving the flow around the propeller exactly is to define an actuator disk region at the location
of the propeller. In this way, the propeller is not modelled exactly, but the momentum transfered
from the propeller to the fluid is predicted and added to the fluid within the actuator disk region.
The momentum may be added as a volume source or it may be added by defining a boundary
condition at the location of the actuator disk and prescribing a pressure jump.

The momentum transferred to the fluid may be predicted in different ways. The easiest ap-
proach is to add a uniform volume force over the actuator disk region and to compute this volume
force in such a way that a desired total thrust and torque are achieved. A slightly more sophis-
ticated approach is to apply a non-uniform volume force calculated from some kind of explicit
equations available. An even more advanced approach would be to compute the volume force
from a propeller performance code, where the propeller performance is allowed to depend on the
flow variables in or close to the actuator disk region. In this way, it would be possible to achieve
two way coupling between the fluid simulation and the structural simulation.

In the present implementation, the momentum transferred to the fluid is added as a volume
force. The volume force varies in the radial direction and it is calculated such that a prescribed
total thrust and torque is imposed on the fluid. For the volume force in the axial and tangential
direction, expressions similar to those given in [4] are adopted. The volume forces are computed
in such a way that the force distribution approximately follows the Goldstein optimum [1], which
means that the forces have a distribution of the form:

f bx = Axr
∗√1− r∗ (1)

f bθ = Aθ
r∗
√

1− r∗
r∗
(
1− r′

h

)
+ r

′
h

(2)

r∗ =
r
′ − r′

h

1− r′
h

, r
′

=
r

RP
(3)

(4)

The constants Ax and Aθ are computed by requiring that the volume force added over the actuator
disk region sums up to the total prescribed thrust T and the total prescribed torque Q. This
requirement is fulfilled if Ax and Aθ are computed as (see appendix 1 for a proof):

Ax =
105

8

T

π∆ (3RH + 4RP) (RP −RH)
(5)

Aθ =
105

8

Q

π∆RP (RP −RH) (3RP + 4RH)
(6)

(7)

Figure (1) shows the normalized axial volume force versus the normalized radius. As can be seen,
the above equations predict a volume force distribution that has a maximum between r = RH
and r = RP while it drops to zero at r = RH and r = RP . As noted in [2], a curve with the
shape depicted in figure (1) is a good approximation of the Goldstein optimum distribution of
circulation. Figure (2) shows the tangential volume force predicted by eqn. (2) for different values
of RH/RP .

2 THEORETICAL BACKGROUND 3

Figure 1: Normalized volume force as a function of normalized radius.
The volume force is largest at moderate distances from the center line
and it drops to zero for r = RH and r = RP .

Figure 2: Volume force in the tangential direction for different values
of RH/RP .

3 GEOMETRICAL DEFINITION OF AN ACTUATOR DISK 4

3 Geometrical definition of an actuator disk

In the present implementation, the actuator disk is assumed to be a hollow cylinder with interior
radius RH and exterior radius RP . The centerline of the cylinder is defined by its start point ps
and its end point pe. For a point to be considered to be inside the actuator disk, the following
conditions must be fulfilled:

• The point must be located between the plane normal to the center line through ps and the
plane normal to the center line through pe.

• The radial distance from the center line must be smaller than RP .

• The radial distance from the center line must be greater than RH .

The above conditions can be evaluated with some linear algebra:

• Compute a unit vector in the direction of the center line: v = pe−ps

|pe−ps|

• Compute the vector from the start point to the point to be tested: s = q − ps

• Compute the length of the center line: L = |pe − ps|

• The projected length of s onto the center line is d = s • v

• The point q is between the plane normal to the center line through ps and the plane normal
to the center line through pe if d > 0 and d < L.

• Now it remains to check the radial distance. A vector from the center line to the point, that
is normal to the center line, is r = s− vd

• The radial distance is r = |r|.

• The point q is located in the actuator disk region if RH < r < RP and q is located between
the two planes through ps and pe as described above.

The axial force f bx is defined positive in the direction of v =
→

pspe. The tangential force f bθ
has positive direction such that the moment about the center line is positive according to the right
hand rule. Figure (3) shows an example of a cylindrical actuator disk region.

Figure 3: Outer surface of a cylindrical actuator disk.

4 THE FAN BOUNDARY CONDITION IN OPENFOAM 5

4 The fan boundary condition in OpenFOAM

Before we start implementing something on our own, we will examine the fan boundary con-
dition already available in OpenFOAM. Start by downloading and extracting the fan tutorial:
http://www.tfd.chalmers.se/~hani/kurser/OS_CFD/fan.tar.gz

There is a patch called fan, where boundary conditions are defined. In 0/U we find the following
lines:

fan

{

type cyclic;

}

The turbulent kinetic energy k and the dissipation ε have the same boundary condition at the fan.
This boundary condition just means that what comes in on one side will go out on the other side,
so U , k and ε will be constant over the (in this example infinitely thin) actuator disk region. Now
open 0/p and locate the following lines:

fan

{

type fan;

patchType cyclic;

f List<scalar> 2 (10.0 -1.0);

value uniform 0;

}

Here, the fan boundary condition is used, so it can be concluded that the fan boundary condition
does something to the pressure. We will now examine what actually happens. Source OpenFOAM
1.5-dev and go to the location of the files for the fan bc:

cd $FOAM_SRC/finiteVolume/fields/fvPatchFields/derived/fan

In this folder, we find fanFvPatchFields.C, which contains the following lines:

void fanFvPatchField<scalar>::updateCoeffs()

{

if (updated())

{

return;

}

jump_ = f_[0];

if (f_.size() > 1)

{

const fvsPatchField<scalar>& phip =

patch().lookupPatchField<surfaceScalarField, scalar>("phi");

scalarField Un =

scalarField::subField(phip, size()/2)

/scalarField::subField(patch().magSf(), size()/2);

if

(

phip.dimensionedInternalField().dimensions()

== dimDensity*dimVelocity*dimArea

)

http://www.tfd.chalmers.se/~hani/kurser/OS_CFD/fan.tar.gz

4 THE FAN BOUNDARY CONDITION IN OPENFOAM 6

{

Un /= patch().lookupPatchField<volScalarField, scalar>("rho");

}

for(label i=1; i<f_.size(); i++)

{

jump_ += f_[i]*pow(Un, i);

}

}

jumpCyclicFvPatchField<scalar>::updateCoeffs();

}

This is the part of the code that computes the pressure jump over the fan. It performs some
checks and computes the velocity at the fan, then it says:

for(label i=1; i<f_.size(); i++)

{

jump_ += f_[i]*pow(Un, i);

}

We see that the pressure jump is computed as a polynomial in the velocity, where the coefficients
of the polynomial, f [i], are specified in 0/p. Hence, the pressure jump is computed as:

∆p =

n∑
i=0

fi · U i (8)

where n is the number of coefficients specified in 0/p
Now we will run the fan tutorial and see what happens:

cd fan

blockMesh

simpleFoam

paraFoam

Figure (4) shows the grid and the inlet, outlet and fan patches. Note that this method requires
the definition of a fan patch in the mesh, the location and size of the fan can not be changed
without changing the mesh.

Figure 4: Geometry of the fan case. The solid patches shown are inlet (right), fan (center) and
outlet (left). Note the pressure jump over the fan.

Now we will examine the pressure variation in the flow direction. Pick Filters → Alphabetical →
Plot over line and let the line go from (0 0.5 0.25) to (8 0.5 0.25). Plot the pressure as shown in

4 THE FAN BOUNDARY CONDITION IN OPENFOAM 7

Figure 5: Pressure in the flow direction.

figure (5). We will also have a look at the streamlines to see how the fan bc affects the velocity
field. Pick Streamline and change Number of points to 50 and Line width to 3. Keep the other
settings as default. The result is shown in figure (6). The fan bc adds a pressure jump in the
flow direction, and this is all it does. As a result, momentum is added in the axial direction,
but not in the tangential direction. Hence, thrust can be modelled with this bc, but it is not
possible to model swirl. Furthermore, this bc offers the posibility to add thrust as a function of
the velocity through the fan, but it does not offer the possibility to add a nonuniform volume force
as a function of, for example, the radial distance from the fan centerline of the point studied.

Figure 6: Streamlines of the flow through the fan. Since no swirl is added, all streamlines are
straight.

5 IMPLEMENTATION OF AN ACTUATOR DISK MODEL 8

5 Implementation of an actuator disk model

5.1 Requirements on the new model

The fan boundary condition is capable of modelling a pressure jump over a predefined patch. This
is sufficient if only the driving force in the axial direction is of interest. However, it would be
advantageuos to also have a model with the following features:

• Possibility to add a nonuniform axial force (thrust) in the actuator disk region.

• Possibility to add a nonuniform tangential force (swirl) in the actuator disk region.

• Definition of actuator disk geometry independent of mesh. It would be good to be able to
add an actuator disk by just entering radius, location and some other parameters in a file,
rather than having to change the mesh. To be more specific, we would like to be able to add
an actuator disk without creating a patch for the actuator disk in the mesh.

5.2 General model structure

The presence of the actuator disk will be accounted for in the equations by adding a volume force
in the cells corresponding to the actuator disk region. As a result of this approach, it is not possible
to implement the new model as a boundary condition. Instead, the model will be implemented as a
volume source and a solver will be modified to include this volume source. In principle, any solver
could be chosen and the implementation procedure does not depend on the solver chosen, except
that distinction must be made between compressible and incompressible solvers. Applications
where the use of an actuator disk might be suitable, such as simulation of wind turbines or ships,
will in general involve turbulent flow. Therefore, a solver for turbulent flow will be chosen for
the application. Compressibility effects or presence of droplets or particles might be interesting,
but for a start it is reasonable to chose a single phase incompressible solver to avoid introducing
excessive complexity already at this early stage. Therefore, the solver simpleFoam is chosen for
this purpose. In short, the following steps must be performed:

• Copy the simpleFoam solver and modify it to include an extra source term in the U-equation.

• Implement an actuator disk class. This class must be able to:

– Read the geometry and other parameters relevant for an actuator disk.

– Find all cells located in the actuator disk region and identify where in the actuator disk
each cell is located (i.e. compute the radial distance from the actuator disk centerline
for each cell).

– Add a volume force to each cell in the actuator disk region according to some prescribed
rule or equation. Here we will implement the equations given in the theory section, but
these could easily be replaced by other equations.

– Visualize the actuator disk in Paraview.

• Basic validation: ensure that all cells in the actuator disk region are identified properly, that
the applied force field has the expected shape and that the fluid field responds as expected
on a global level.

• More validation: comparison with a case from the literature.

5.3 Modification of simpleFoam

Copy the simpleFoam solver:

cp -r $FOAM_APP/solvers/incompressible/simpleFoam \

$WM_PROJECT_USER_DIR/applications/actuatorDiskExplicitForce

5 IMPLEMENTATION OF AN ACTUATOR DISK MODEL 9

Rename simpleFoam.C to actuatorDiskExplicitForceSimpleFoam.C In order to be able to compile
the new application, we must modify the files in the Make directory. Change Make/files to

actuatorDiskExplicitForceSimpleFoam.C

//actuatorDiskExplicitForce.C

EXE = $(FOAM_USER_APPBIN)/actuatorDiskExplicitForceSimpleFoam

Change Make/options to

EXE_INC = \

-I$(LIB_SRC)/finiteVolume/lnInclude \

-I$(LIB_SRC)/turbulenceModels/RAS \

-I$(LIB_SRC)/transportModels

EXE_LIBS = \

-lincompressibleRASModels \

-lincompressibleTransportModels \

-lfiniteVolume \

-lmeshTools \

-llduSolvers \

/* $(LIB_WM_OPTIONS_DIR)/libfbsdmalloc.o */

It is a good idea to try to compile the application before we change anything, to make sure that
the basic setup is correct. Go to the actuatorDiskExplicitForce directory and type wmake. If
the solver compiles without errors, we can start making our own modifications to it. Start by
opening Make/options again and uncomment the file actuatorDiskExplicitForce.C, which we have
not written yet:

actuatorDiskExplicitForceSimpleFoam.C

actuatorDiskExplicitForce.C

EXE = $(FOAM_USER_APPBIN)/actuatorDiskExplicitForceSimpleFoam

We want the volume force to be written to file in the same way as for example U, so that it
can be visualized in Paraview. Therefore, we create a volVectorField to describe the volume force.
Open createFields.H and add the following lines:

Info << "Creating volume force field.\n";

volVectorField VolumeForce

(

IOobject

(

"VolumeForce",

runTime.timeName(),

mesh,

IOobject::MUST_READ,

IOobject::AUTO_WRITE

),

mesh

);

To use the actuator disk, an actuator disk object must be created and initiated. This is done
in actuatorDiskExplicitForceSimpleFoam.C. We also want to write the geometry to VTK format
so that it can be visualized in Paraview. Add the following lines

Info<< "\nStarting time loop\n" << endl;

5 IMPLEMENTATION OF AN ACTUATOR DISK MODEL 10

actuatorDiskExplicitForce actuatorDisk;

//Read actuator disk geometry

actuatorDisk.ReadGeometry(mesh);

//Write geometry to vtk

actuatorDisk.WriteVTK();

Also add the following at the top

#include "actuatorDiskExplicitForce.h"

5.4 Implementation of an actuator disk class

We will write the class actuatorDiskExplicitForce from scratch starting with an empty file and
only write the functions we actually need, rather than copying and reusing a lot of constructors
etc. This will make the code at least a little bit cleaner. The class contains the following functions
and variables (a few of them are not mentioned here):

• TypeName(”actuatorDiskExplicitForce”)

• actuatorDiskExplicitForce() This is the default constructor and the only constructor we will
implement.

• ˜actuatorDiskExplicitForce(); This is the destructor.

• void ReadGeometry(const fvMesh &iMesh) Reads the definition of the actuator disk from
fvSolution.

• void CalcActuatorDiskVolForce(const fvMesh &iMesh, vectorField &ioVolumeForce) Calcu-
lates the volume force in every point and adds it to the volume force vector field.

• void WriteVTK() Writes the actuator disk geometry to a vtk file.

• vector mPointStartCenterLine

• vector mPointEndCenterLine

• scalar mExtRadius, mIntRadius

• scalar mThrust, mTorque

• scalar mRho

• bool PointIsInDisk(const vector &iPointStartCenterLine, const vector &iPointEndCenter-
Line, const vector &iPoint, scalar &oDist2, vector &oLineTangent, vector &oCircumferen-
tialDirection) Checks if a given point is located inside the actuator disk region.

• scalar CalcAxialForce(const scalar iRadialDist, const scalar iRho) Calculates the axial com-
ponent of the volume force.

• scalar CalcCircForce(const scalar iRadialDist, const scalar iRho) Calculates the tangential
component of the volume force.

• const scalar CalcDiskThickness() Calcualtes the thickness of the actuator disk.

There are some points in the list above that require additional explanation. The functions Cal-
cAxialForce() and CalcCircForce() compute the scalar values of the force components in axial
and tangential direction, respectively. CalcActuatorDiskVolForce() transforms these scalar force
components to a vectorial force in cartesian coordinates and adds it to the volume force field.

5 IMPLEMENTATION OF AN ACTUATOR DISK MODEL 11

Since simpleFoam is an incompressible solver, the momentum equation has been divided by ρ.
Hence, the volume force from the actuator disk must also be divided by ρ before adding it to the
momentum equation.

The VTK format is used to visualize the actuator disk region. VTK is an open source for-
mat that is capable of handling complex geometries and it is reasonably easy to implement
your own visualizations in this format. See reference [5] for details. Especially, have a look
at http://www.vtk.org/VTK/img/file-formats.pdf. There you can find a good description of all
structures that can be visualized in VTK format. The outer surface of the actuator disk is a cylin-
der. It is visualized by putting points on the cylinder surface and drawing rectangular surfaces
between the point. The following steps are performed in the function WriteVTK():

• Initiation of variables:

FILE *file;

char fileName[100];

//The cylindrical surface is visualized as 20 rectangular surfaces

unsigned int NumCells = 20;

//40 points are required; 20 points at each end of the cylinder

unsigned int NumPoints = 40;

//Number of integers needed in the the VTK file; each surface has 4 corner

//points, so we need 4 corner indices + the index of the surface = 5 indices

//per surface

unsigned int NumInts = 5*NumCells;

vectorField points(NumPoints,vector::zero);

• Compute a vector in the direction of the centerline of the cylinder and find a vector in the
radial direction (since the cylindrical surface has rotational symmetry, any vector in the
radial direction will do). Use these two vectors to form an ON-basis:

vector VecLineTangent(mPointEndCenterLine - mPointStartCenterLine);

scalar LineTangentLength = sqrt(VecLineTangent.x()*VecLineTangent.x()...

...+VecLineTangent.y()*VecLineTangent.y() + VecLineTangent.z()*VecLineTangent.z());

if(LineTangentLength != 0.0) {

VecLineTangent /= LineTangentLength;

}

else {

Info << "Warning: The centerline tangent has zero length.\n";

return;

}

//We need to find a vector in the radial direction. This can be any vector as long as it

// points in the radial direction. First try with (1 0 0) and see if we can

//project it onto the normal plane of the actuator disk resulting in a vector

//in the radial direction.

vector VecRadialDirection(1.0,0.0,0.0);

VecRadialDirection -= (VecRadialDirection & VecLineTangent)*VecLineTangent;

if(mag(VecRadialDirection) < SMALL) {

//If we enter this if statement, our guess (1 0 0) was parallel to the

http://www.vtk.org/VTK/img/file-formats.pdf

5 IMPLEMENTATION OF AN ACTUATOR DISK MODEL 12

//centerline of the actuator disk. Then we try (0 1 0) instead. Since

//(1 0 0) was parallel to the centerline, (0 1 0) will for sure not be

//parallel to the centerline. VecRadialDirection.x() = 0.0;

VecRadialDirection.y() = 1.0;

VecRadialDirection.z() = 0.0;

VecRadialDirection -= (VecRadialDirection & VecLineTangent)*VecLineTangent;

}

if(mag(VecRadialDirection) > SMALL) {

VecRadialDirection /= mag(VecRadialDirection);

}

else {

Info << "Warning in actuatorDiskExplicitForce::WriteVTK():...

...mag(VecRadialDirection) close to zero.\n";

}

vector VecRadialDirection2 = VecLineTangent ^ VecRadialDirection;

scalar XLocal = 0.0, YLocal = 0.0;

• Compute points on the cylinder surface by starting in one point on the surface and then
walking over the surface in the tangential direction:

//Compute points on first side of disk region

double phi = 0.0;

for(unsigned int i = 0; i < NumCells; i++) {

XLocal = mExtRadius*cos(phi);

YLocal = mExtRadius*sin(phi);

vector point(mPointStartCenterLine + XLocal*VecRadialDirection +

YLocal*VecRadialDirection2); points[i] = point;

phi += (1.0/double(NumCells))*2*mPI;

}

//Compute points on second side of disk region

phi = 0.0;

for(unsigned int i = 0; i < NumCells; i++) {

XLocal = mExtRadius*cos(phi);

YLocal = mExtRadius*sin(phi);

vector point(mPointEndCenterLine + XLocal*VecRadialDirection+YLocal*VecRadialDirection2); points[NumCells + i] = point; phi += (1.0/double(NumCells))*2*mPI;

}

• Write everything to file:

sprintf(fileName,"actuatorDisk.vtk");

file = fopen(fileName,"w");

fprintf(file,"# vtk DataFile Version 3.0\n");

fprintf(file,"Analytical surface of actuator disk. \n");

fprintf(file,"ASCII\n");

5 IMPLEMENTATION OF AN ACTUATOR DISK MODEL 13

fprintf(file,"DATASET UNSTRUCTURED_GRID\n");

fprintf(file,"POINTS %i float\n",NumPoints);

for(int i = 0; i < points.size(); i++) {

fprintf(file,"%e %e %e\n",points[i].x(),points[i].y(),points[i].z());

}

fprintf(file,"CELLS %i %i\n",NumCells,NumInts);

for(unsigned int i = 0; i < NumCells-1; i++) {

fprintf(file,"%i %i %i %i %i \n",4,i,i+NumCells,i+NumCells+1,i+1);

}

fprintf(file,"%i %i %i %i %i \n",4,NumCells-1,2*NumCells-1,NumCells,0);

fprintf(file,"CELL_TYPES %i\n",NumCells);

for(unsigned int i = 0; i < NumCells; i++) {

fprintf(file,"%i\n",9);

}

fclose(file);

The content of actuatorDiskExplicitForce.h and actuatorDiskExplicitForce.cpp is given below.

5.5 actuatorDiskExplicitForce.h

1 /* ---*\
2 ========= |
3 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
4 \\ / O peration |
5 \\ / A nd | Copyright held by original author
6 \\/ M anipulation |
7 ---
8 License
9 This file is part of OpenFOAM.

10
11 OpenFOAM is free software; you can redistribute it and/or modify it
12 under the terms of the GNU General Public License as published by the
13 Free Software Foundation; either version 2 of the License , or (at your
14 option) any later version.
15
16 OpenFOAM is distributed in the hope that it will be useful , but WITHOUT
17 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with OpenFOAM; if not , write to the Free Software Foundation ,
23 Inc., 51 Franklin St , Fifth Floor , Boston , MA 02110 -1301 USA
24
25 Application
26 actuatorDiskExplicitForce
27
28 Description
29 Add volume force in an actuator disk region from thrust , torque and geometry defined in

fvSolution.
30 Use with actuatorDiskExplicitForceSimpleFoam
31
32 Written by Erik Svenning , October 2010
33
34 *---*/
35
36 #ifndef ACTUATORDISKEXPLICITFORCE_H_
37 #define ACTUATORDISKEXPLICITFORCE_H_
38

5 IMPLEMENTATION OF AN ACTUATOR DISK MODEL 14

39 #include "fvCFD.H"
40
41 namespace Foam {
42
43 class actuatorDiskExplicitForce {
44
45 public:
46
47 //- Runtime type information
48 TypeName("actuatorDiskExplicitForce");
49
50
51 actuatorDiskExplicitForce ();
52 ~actuatorDiskExplicitForce ();
53
54 void ReadGeometry(const fvMesh &iMesh);
55 void CalcActuatorDiskVolForce(const fvMesh &iMesh , vectorField &ioVolumeForce);
56
57 void WriteVTK ();
58
59 private:
60 vector mPointStartCenterLine;
61 vector mPointEndCenterLine;
62 scalar mExtRadius , mIntRadius;
63 scalar mThrust , mTorque;
64 scalar mRho;
65
66 static const double mPI = 3.141592654;
67
68 bool PointIsInDisk(const vector &iPointStartCenterLine , const vector &

iPointEndCenterLine , const vector &iPoint , scalar &oDist2 , vector &oLineTangent ,
vector &oCircumferentialDirection);

69 bool PointIsInHub(const vector &iPointStartCenterLine , const vector &
iPointEndCenterLine , const vector &iPoint);

70
71 scalar CalcAxialForce(const scalar &iRadialDist , const scalar &iRho);
72 scalar CalcCircForce(const scalar &iRadialDist , const scalar &iRho);
73 scalar CalcDiskThickness () {return mag(mPointEndCenterLine - mPointStartCenterLine);};
74 };
75
76 }//end namespace Foam
77 #endif /* ACTUATORDISKEXPLICITFORCE_H_ */

5.6 actuatorDiskExplicitForce.cpp

1 /* ---*\
2 ========= |
3 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
4 \\ / O peration |
5 \\ / A nd | Copyright held by original author
6 \\/ M anipulation |
7 ---
8 License
9 This file is part of OpenFOAM.

10
11 OpenFOAM is free software; you can redistribute it and/or modify it
12 under the terms of the GNU General Public License as published by the
13 Free Software Foundation; either version 2 of the License , or (at your
14 option) any later version.
15
16 OpenFOAM is distributed in the hope that it will be useful , but WITHOUT
17 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with OpenFOAM; if not , write to the Free Software Foundation ,
23 Inc., 51 Franklin St , Fifth Floor , Boston , MA 02110 -1301 USA
24
25 Application
26 actuatorDiskExplicitForce
27
28 Description
29 Adds volume force in an actuator disk region from thrust , torque and geometry defined in

fvSolution.
30 Use with actuatorDiskExplicitForceSimpleFoam
31

5 IMPLEMENTATION OF AN ACTUATOR DISK MODEL 15

32 The actuator disk can be defined by adding the following lines in fvSolution:
33
34 actuatorDisk
35 {
36 interiorRadius 1.6; // Radius of the propeller hub
37 exteriorRadius 20.5; // Exterior radius of the propeller
38 thrust 47.5e3; // Total force in the axial direction [N]
39 torque 112.0e3; // Total torque in the actuator disk region , positive

according to the right hand rule
40 density 1.2; // Fluid desity
41 startPoint (103.0 0 0); // Coordinates of start point
42 endPoint (102.0 0 0); // Coordinates of end point
43 }
44
45 Written by Erik Svenning , October 2010
46
47
48 *---*/
49
50 #include "actuatorDiskExplicitForce.h"
51
52 #include "faceAreaPairGAMGAgglomeration.H"
53 #include "fvMesh.H"
54 #include "surfaceFields.H"
55 #include "addToRunTimeSelectionTable.H"
56
57 namespace Foam {
58 defineTypeNameAndDebug(actuatorDiskExplicitForce , 0);
59
60
61 // Default constructor
62 actuatorDiskExplicitForce :: actuatorDiskExplicitForce () {
63
64 //Set default values to all member variables
65 mPointStartCenterLine.x() = 0.0;
66 mPointStartCenterLine.y() = 0.0;
67 mPointStartCenterLine.z() = 0.0;
68
69 mPointEndCenterLine.x() = 0.0;
70 mPointEndCenterLine.y() = 0.0;
71 mPointEndCenterLine.z() = 0.0;
72
73 mExtRadius = 0.0;
74 mIntRadius = 0.0;
75 mThrust = 0.0;
76 mTorque = 0.0;
77 mRho = 1.0;
78 }
79
80 actuatorDiskExplicitForce ::~ actuatorDiskExplicitForce () {
81
82 }
83
84 void actuatorDiskExplicitForce :: ReadGeometry(const fvMesh &iMesh) {
85 if(debug >= 1) {
86 Info << "Reading actuator disk geometry .\n";
87 }
88
89 //

//

90 //Read actuator dict definition from solution dict (fvSolution)
91 //

//

92 Istream& is1 = iMesh.solutionDict ().subDict("actuatorDisk").lookup("
interiorRadius");

93 is1.format(IOstream ::ASCII);
94 is1 >> mIntRadius;
95
96 Istream& is2 = iMesh.solutionDict ().subDict("actuatorDisk").lookup("exteriorRadius"

);
97 is2.format(IOstream ::ASCII);
98 is2 >> mExtRadius;
99

100 Istream& is3 = iMesh.solutionDict ().subDict("actuatorDisk").lookup("thrust");
101 is3.format(IOstream ::ASCII);
102 is3 >> mThrust;
103
104 Istream& is4 = iMesh.solutionDict ().subDict("actuatorDisk").lookup("torque");
105 is4.format(IOstream ::ASCII);

5 IMPLEMENTATION OF AN ACTUATOR DISK MODEL 16

106 is4 >> mTorque;
107
108 Istream& is6 = iMesh.solutionDict ().subDict("actuatorDisk").lookup("density");
109 is6.format(IOstream ::ASCII);
110 is6 >> mRho;
111
112 Istream& is7 = iMesh.solutionDict ().subDict("actuatorDisk").lookup("startPoint");
113 is7.format(IOstream ::ASCII);
114 is7 >> mPointStartCenterLine;
115
116 Istream& is8 = iMesh.solutionDict ().subDict("actuatorDisk").lookup("endPoint");
117 is8.format(IOstream ::ASCII);
118 is8 >> mPointEndCenterLine;
119
120 if(debug >= 2) {
121 Info << "Actuator disk values loaded from fvSolution :\n";
122 Info << "mIntRadius: " << mIntRadius << "\n";
123 Info << "mExtRadius: " << mExtRadius << "\n";
124 Info << "mThrust: " << mThrust << "\n";
125 Info << "mTorque: " << mTorque << "\n";
126 Info << "mRho: " << mRho << "\n";
127 Info << "mPointStartCenterLine: " << mPointStartCenterLine << "\n";
128 Info << "mPointEndCenterLine: " << mPointEndCenterLine << "\n";
129 }
130
131 }
132
133 void actuatorDiskExplicitForce :: CalcActuatorDiskVolForce(const fvMesh &iMesh , vectorField &

ioVolumeForce) {
134
135 if(debug >= 1) {
136 Info << "Calculating volume force from actuator disk.\n";
137 }
138
139 ReadGeometry(iMesh);
140
141 scalar RadialDist2;
142 vector LineTangent;
143 vector CircumferentialDirection;
144
145 vector TotalForce (0.0 ,0.0 ,0.0);
146 scalar TotalTorque = 0.0;
147
148 scalar DiskVolume = 0;
149
150 //Loop over all cells and check if the cell center is in the actuator disk region
151 for(label i = 0; i < iMesh.C().size(); i++) {
152
153 if(PointIsInDisk(mPointStartCenterLine ,mPointEndCenterLine ,iMesh.C()[i],

RadialDist2 , LineTangent ,CircumferentialDirection)) {
154
155 if(debug >= 3) {
156 Info << "Point: " << i << " is in the actuator disk.

Coordinates: " << iMesh.C()[i] << "\n";
157 }
158
159 vector axialForce = LineTangent*CalcAxialForce(sqrt(RadialDist2),mRho)/

mRho;
160 ioVolumeForce[i] += axialForce;
161
162 // compute the total force added to the actuator disk , this is just for

control
163 TotalForce += axialForce*iMesh.V()[i];
164
165 vector circForce = CircumferentialDirection*CalcCircForce(sqrt(

RadialDist2),mRho)/mRho;
166 ioVolumeForce[i] += circForce;
167
168 TotalTorque += (CalcCircForce(sqrt(RadialDist2),mRho)/mRho)*sqrt(

RadialDist2)*iMesh.V()[i];
169 DiskVolume += iMesh.V()[i];
170 }
171 }
172
173 Info << "Total axial force: " << TotalForce << "\n";
174 Info << "Total torque: " << TotalTorque << "\n";
175 Info << "Total disk volume: " << DiskVolume << "\n";
176 }
177
178 void actuatorDiskExplicitForce :: WriteVTK () {

5 IMPLEMENTATION OF AN ACTUATOR DISK MODEL 17

179 //
///

180 // Write the outer surface of the actuator disk to a VTK file so that it can be visualized
in Paraview.

181 //
///

182 FILE *file;
183 char fileName [100];
184
185 unsigned int NumCells = 20; //The cylindrical surface is visualized as 20

rectangular surfaces
186 unsigned int NumPoints = 40; //40 points are required; 20 points at each end of

the cylinder
187 unsigned int NumInts = 5* NumCells; // Number of integers needed in the the VTK

file; each surface has 4 corner points , so we need 4 corner indices + the
index of the surface = 5 indices per surface

188
189 vectorField points(NumPoints ,vector ::zero);
190
191 vector VecLineTangent(mPointEndCenterLine - mPointStartCenterLine);
192 scalar LineTangentLength = sqrt(VecLineTangent.x()*VecLineTangent.x() +

VecLineTangent.y()*VecLineTangent.y() + VecLineTangent.z()*VecLineTangent.
z());

193
194 if(LineTangentLength != 0.0) {
195 VecLineTangent /= LineTangentLength;
196 }
197 else {
198 Info << "Warning: The centerline tangent has zero length .\n";
199 return;
200 }
201
202 //We need to find a vector in the radial direction. This can be any vector as

long as it points in the radial direction.
203 //First try with (1 0 0) and see if we can project it onto the normal plane of

the actuator disk resulting in a vector in
204 //the radial direction.
205 vector VecRadialDirection (1.0 ,0.0 ,0.0);
206 VecRadialDirection -= (VecRadialDirection & VecLineTangent)*VecLineTangent;
207
208 if(mag(VecRadialDirection) < SMALL) {
209 //If we enter this if statement , our guess (1 0 0) was parallel to the

centerline of the actuator disk. Then
210 //we try (0 1 0) instead. Since (1 0 0) was parallel to the centerline ,

(0 1 0) will for sure not be parallel to
211 //the centerline.
212 VecRadialDirection.x() = 0.0;
213 VecRadialDirection.y() = 1.0;
214 VecRadialDirection.z() = 0.0;
215
216 VecRadialDirection -= (VecRadialDirection & VecLineTangent)*

VecLineTangent;
217 }
218
219 if(mag(VecRadialDirection) > SMALL) {
220 VecRadialDirection /= mag(VecRadialDirection);
221 }
222 else {
223 Info << "Warning in actuatorDiskExplicitForce :: WriteVTK (): mag(

VecRadialDirection) close to zero.\n";
224 }
225
226 vector VecRadialDirection2 = VecLineTangent ^ VecRadialDirection;
227 scalar XLocal = 0.0, YLocal = 0.0;
228
229 // Compute points on first side of disk region
230 double phi = 0.0;
231 for(unsigned int i = 0; i < NumCells; i++) {
232 XLocal = mExtRadius*cos(phi);
233 YLocal = mExtRadius*sin(phi);
234
235 vector point(mPointStartCenterLine + XLocal*VecRadialDirection + YLocal

*VecRadialDirection2);
236 points[i] = point;
237 phi += (1.0/ double(NumCells))*2* mPI;
238 }
239
240 // Compute points on second side of disk region
241 phi = 0.0;

5 IMPLEMENTATION OF AN ACTUATOR DISK MODEL 18

242 for(unsigned int i = 0; i < NumCells; i++) {
243 XLocal = mExtRadius*cos(phi);
244 YLocal = mExtRadius*sin(phi);
245
246 vector point(mPointEndCenterLine + XLocal*VecRadialDirection + YLocal*

VecRadialDirection2);
247 points[NumCells + i] = point;
248 phi += (1.0/ double(NumCells))*2* mPI;
249 }
250
251
252 sprintf(fileName ,"actuatorDisk.vtk");
253 file = fopen(fileName ,"w");
254
255 fprintf(file ,"# vtk DataFile Version 3.0\n");
256 fprintf(file ,"Analytical surface of actuator disk. \n");
257 fprintf(file ,"ASCII\n");
258
259 fprintf(file ,"DATASET UNSTRUCTURED_GRID\n");
260 fprintf(file ,"POINTS %i float\n",NumPoints);
261
262 for(int i = 0; i < points.size(); i++) {
263 fprintf(file ,"%e %e %e\n",points[i].x(),points[i].y(),points[i].z());
264 }
265
266 fprintf(file ,"CELLS %i %i\n",NumCells ,NumInts);
267
268 for(unsigned int i = 0; i < NumCells -1; i++) {
269 fprintf(file ,"%i %i %i %i %i \n" ,4,i,i+NumCells ,i+NumCells+1,i+1);
270 }
271 fprintf(file ,"%i %i %i %i %i \n" ,4,NumCells -1,2* NumCells -1,NumCells ,0);
272
273 fprintf(file ,"CELL_TYPES %i\n",NumCells);
274
275 for(unsigned int i = 0; i < NumCells; i++) {
276 fprintf(file ,"%i\n" ,9);
277 }
278
279 fclose(file);
280 }
281
282
283 bool actuatorDiskExplicitForce :: PointIsInDisk(const vector &iPointStartCenterLine , const vector

&iPointEndCenterLine , const vector &iPoint , scalar &oDist2 , vector &oLineTangent , vector
&oCircumferentialDirection) {

284 //
///

285 // Check if a given point is located in the actuator disk region.
286 //

///

287
288 vector VecLineTangent(iPointEndCenterLine - iPointStartCenterLine);
289 scalar LineTangentLength = sqrt(VecLineTangent.x()*VecLineTangent.x() + VecLineTangent.

y()*VecLineTangent.y() + VecLineTangent.z()*VecLineTangent.z());
290
291 if(LineTangentLength != 0.0) {
292 VecLineTangent /= LineTangentLength;
293 }
294 else {
295 Info << "Warning: The centerline tangent has zero length .\n";
296 return false;
297 }
298
299 oLineTangent = VecLineTangent;
300
301 vector VecStartLineToPoint(iPoint - iPointStartCenterLine);
302 scalar PointProjOnLine = VecStartLineToPoint & VecLineTangent;
303
304 //Check if the point is inside the actuator disk in the axial direction
305 if(!(PointProjOnLine >= 0.0 && PointProjOnLine <= LineTangentLength)) {
306 return false;
307 }
308
309 vector VecLineToPoint(VecStartLineToPoint - (VecLineTangent*PointProjOnLine));
310 scalar RadialDist2 = VecLineToPoint.x()*VecLineToPoint.x() + VecLineToPoint.y()*

VecLineToPoint.y() + VecLineToPoint.z()*VecLineToPoint.z();
311 oDist2 = RadialDist2;
312
313 oCircumferentialDirection = VecLineTangent ^ VecLineToPoint;

5 IMPLEMENTATION OF AN ACTUATOR DISK MODEL 19

314 oCircumferentialDirection /= mag(oCircumferentialDirection);
315
316 //Check if the point is inside the actuator disk in the radial direction
317 return(RadialDist2 <= mExtRadius*mExtRadius && RadialDist2 >= mIntRadius*mIntRadius);
318
319 }
320
321 bool actuatorDiskExplicitForce :: PointIsInHub(const vector &iPointStartCenterLine , const vector

&iPointEndCenterLine , const vector &iPoint) {
322 //

///

323 // Check if a given point is located within the outer surface of the actuator disk region
and so close to the centerline

324 // that the radial distance is smaller than the interior radius of the actuator disk.
325 // This function is currently not used.
326 //

///

327
328 vector VecLineTangent(iPointEndCenterLine - iPointStartCenterLine);
329 scalar LineTangentLength = sqrt(VecLineTangent.x()*VecLineTangent.x() + VecLineTangent.

y()*VecLineTangent.y() + VecLineTangent.z()*VecLineTangent.z());
330
331 if(LineTangentLength != 0.0) {
332 VecLineTangent /= LineTangentLength;
333 }
334 else {
335 Info << "Warning: The centerline tangent has zero length .\n";
336 return false;
337 }
338
339 vector VecStartLineToPoint(iPoint - iPointStartCenterLine);
340 scalar PointProjOnLine = VecStartLineToPoint & VecLineTangent;
341
342 //Check if the point is inside the actuator disk in the axial direction
343 if(!(PointProjOnLine >= 0.0 && PointProjOnLine <= LineTangentLength)) {
344 return false;
345 }
346
347 vector VecLineToPoint(VecStartLineToPoint - (VecLineTangent*PointProjOnLine));
348 scalar RadialDist2 = VecLineToPoint.x()*VecLineToPoint.x() + VecLineToPoint.y()*

VecLineToPoint.y() + VecLineToPoint.z()*VecLineToPoint.z();
349
350 //Check if the point is inside the actuator disk in the radial direction
351 return(RadialDist2 < mIntRadius*mIntRadius);
352
353 }
354
355
356 scalar actuatorDiskExplicitForce :: CalcAxialForce(const scalar &iRadialDist , const scalar &iRho)

{
357 //

///

358 // Compute the force component in the axial direction. The force is computed from a simple
equation resulting in a force

359 // that varies with the radial distance.
360 // If you have a better model of a rotor , comment the four lines below and add your own

calculation of the axial force.
361 // Do not forget to also change the calculation of the tangential force (CalcCircForce ())

below.
362 //

///

363 scalar axialForce = 0.0;
364 scalar radiusScaled = (iRadialDist/mExtRadius - mIntRadius/mExtRadius)/(1.0 -

mIntRadius/mExtRadius);
365 scalar Ax = (105.0/8.0)*mThrust /(CalcDiskThickness ()*mPI *(3.0* mIntRadius +4.0* mExtRadius

)*(mExtRadius -mIntRadius));
366 axialForce = Ax*radiusScaled*sqrt (1.0 - radiusScaled);
367 //

///

368
369 if(debug >= 2) {
370 Info << "Axial force: " << axialForce << "\n";
371 }
372
373 return axialForce;
374 }

5 IMPLEMENTATION OF AN ACTUATOR DISK MODEL 20

375
376 scalar actuatorDiskExplicitForce :: CalcCircForce(const scalar &iRadialDist , const scalar &iRho)

{
377 //

///

378 // Compute the force component in the tangential direction. The force is computed from a
simple equation resulting in a force

379 // that varies with the radial distance.
380 // Change the four lines below if you have a better model.
381 //

///

382 scalar tangentialForce = 0.0;
383 scalar radiusScaled = (iRadialDist/mExtRadius - mIntRadius/mExtRadius)/(1.0 -

mIntRadius/mExtRadius);
384 scalar At = (105.0/8.0)*mTorque /(CalcDiskThickness ()*mPI*mExtRadius *(mExtRadius -

mIntRadius)*(3.0* mExtRadius +4.0* mIntRadius));
385 tangentialForce = (At*radiusScaled*sqrt (1.0 - radiusScaled)/(radiusScaled *(1.0 -

mIntRadius/mExtRadius) + mIntRadius/mExtRadius));
386 //

//

387
388 if(debug >= 2) {
389 Info << "Tangential force: " << tangentialForce << "\n";
390 }
391
392 return tangentialForce;
393 }
394
395
396 } //end namespace Foam

5.7 actuatorDiskExplicitForceSimpleFoam.C

1 /* ---*\
2 ========= |
3 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
4 \\ / O peration |
5 \\ / A nd | Copyright held by original author
6 \\/ M anipulation |
7 ---
8 License
9 This file is part of OpenFOAM.

10
11 OpenFOAM is free software; you can redistribute it and/or modify it
12 under the terms of the GNU General Public License as published by the
13 Free Software Foundation; either version 2 of the License , or (at your
14 option) any later version.
15
16 OpenFOAM is distributed in the hope that it will be useful , but WITHOUT
17 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with OpenFOAM; if not , write to the Free Software Foundation ,
23 Inc., 51 Franklin St , Fifth Floor , Boston , MA 02110 -1301 USA
24
25 Application
26 actuatorDiskExplicitForceSimpleFoam
27
28 Description
29 Steady -state solver for incompressible , turbulent flow.
30 Modifed to allow the presence of an actuator disk.
31
32 *---*/
33
34 #include "fvCFD.H"
35 #include "incompressible/singlePhaseTransportModel/singlePhaseTransportModel.H"
36 #include "incompressible/RASModel/RASModel.H"
37
38 #include "actuatorDiskExplicitForce.h"
39
40 // * //
41

5 IMPLEMENTATION OF AN ACTUATOR DISK MODEL 21

42 int main(int argc , char *argv [])
43 {
44
45 # include "setRootCase.H"
46 # include "createTime.H"
47 # include "createMesh.H"
48 # include "createFields.H"
49 # include "initContinuityErrs.H"
50
51 // * //
52
53 Info << "\nStarting time loop\n" << endl;
54
55 actuatorDiskExplicitForce actuatorDisk;
56 //Read actuator disk geometry
57 actuatorDisk.ReadGeometry(mesh);
58
59 //Write geometry to VTK
60 actuatorDisk.WriteVTK ();
61
62
63 for (runTime ++; !runTime.end(); runTime ++)
64 {
65 Info << "Time = " << runTime.timeName () << nl << endl;
66
67 # include "readSIMPLEControls.H"
68 # include "initConvergenceCheck.H"
69
70 p.storePrevIter ();
71
72 // Pressure -velocity SIMPLE corrector
73 {
74 # include "UEqn.H"
75 # include "pEqn.H"
76 }
77
78 turbulence ->correct ();
79
80 runTime.write ();
81
82 Info << "ExecutionTime = " << runTime.elapsedCpuTime () << " s"
83 << " ClockTime = " << runTime.elapsedClockTime () << " s"
84 << nl << endl;
85
86 # include "convergenceCheck.H"
87 }
88
89 Info << "End\n" << endl;
90
91 return (0);
92 }
93
94
95 // *** //

5.8 UEqn.H

1 // Solve the Momentum equation
2
3 tmp <fvVectorMatrix > UEqn
4 (
5 fvm::div(phi , U)
6 + turbulence ->divDevReff(U)
7);
8
9 UEqn().relax();

10
11 //Clear old values in ioVolumeForce
12 for(label k = 0; k < VolumeForce.size(); k++) {
13 VolumeForce[k] = vector ::zero;
14 }
15
16 // Calculate volume force from actuator disk
17 actuatorDisk.CalcActuatorDiskVolForce(mesh , VolumeForce);
18
19 eqnResidual = solve
20 (

6 BASIC VALIDATION 22

21 UEqn() == -fvc::grad(p) + VolumeForce
22).initialResidual ();
23
24 maxResidual = max(eqnResidual , maxResidual);

5.9 createFields.H

1 Info << "Reading field p\n" << endl;
2 volScalarField p
3 (
4 IOobject
5 (
6 "p",
7 runTime.timeName (),
8 mesh ,
9 IOobject ::MUST_READ ,

10 IOobject :: AUTO_WRITE
11),
12 mesh
13);
14
15 Info << "Reading field U\n" << endl;
16 volVectorField U
17 (
18 IOobject
19 (
20 "U",
21 runTime.timeName (),
22 mesh ,
23 IOobject ::MUST_READ ,
24 IOobject :: AUTO_WRITE
25),
26 mesh
27);
28
29 Info << "Creating volume force field.\n";
30
31 volVectorField VolumeForce
32 (
33 IOobject
34 (
35 "VolumeForce",
36 runTime.timeName (),
37 mesh ,
38 IOobject ::MUST_READ ,
39 IOobject :: AUTO_WRITE
40),
41 mesh
42);
43
44 # include "createPhi.H"
45
46
47 label pRefCell = 0;
48 scalar pRefValue = 0.0;
49 setRefCell(p, mesh.solutionDict ().subDict("SIMPLE"), pRefCell , pRefValue);
50
51
52 singlePhaseTransportModel laminarTransport(U, phi);
53
54 autoPtr <incompressible ::RASModel > turbulence
55 (
56 incompressible :: RASModel ::New(U, phi , laminarTransport)
57);

6 Basic validation

To ensure that the new model works somewhat reasonable, we use the fan tutorial discussed
previously and make some changes to it. Start by copying the fan tutorial and renaming it to
cavityActuatorDisk. Change blockmeshDict to:

6 BASIC VALIDATION 23

convertToMeters 1;

x0 0.0;

x1 5.0;

//x2 5.0;

x3 10.0;

y0 0.0;

y1 1.0;

z0 0.0;

z1 1.0;

vertices

(

($x0 $y0 $z0)

($x1 $y0 $z0)

($x1 $y1 $z0)

($x0 $y1 $z0)

($x0 $y0 $z1)

($x1 $y0 $z1)

($x1 $y1 $z1)

($x0 $y1 $z1)

($x3 $y0 $z0)

($x3 $y1 $z0)

($x3 $y0 $z1)

($x3 $y1 $z1)

);

blocks

(

hex (0 1 2 3 4 5 6 7) (160 40 40) simpleGrading (1 1 1)

hex (1 8 9 2 5 10 11 6) (160 40 40) simpleGrading (1 1 1)

);

patches

(

patch inlet

(

(0 4 7 3)

)

patch outlet

(

(9 11 10 8)

)

wall walls

(

(0 1 2 3)

(1 8 9 2)

(0 1 5 4)

(1 8 10 5)

(4 5 6 7)

(5 10 11 6)

(3 7 6 2)

6 BASIC VALIDATION 24

(2 6 11 9)

)

// cyclic fan

// (

// (1 2 6 5)

// (8 12 15 11)

//)

);

mergePatchPairs

(

);

As can be seen, the fan patch has been removed so that there is no longer an internal patch at
the location of the fan. Note that some vertices have been changed, resulting in changes in the
patches and blocks. We also need to remove the fan boundary condition in 0/U, 0/p, 0/k and
0/epsilon. When this is done, also change the internal field of U to internalField uniform (0 0
0); .

The new class writes the volume force to file every time step so that it can be visualized in
Paraview. Hence we need a (dummy) file containing the volume force at time 0. The values
specified in this file will not affect the solution, it is just a dummy file that needs to be present.
For this purpose, copy the U file:

cp 0/U 0/VolumeForce

Change the dimensions in

0/VolumeForce

to

[0 1 -2 0 0 0 0]

Finally, it is time to add the definition of the actuator disk. Open system/fvSolution and add the
following lines

actuatorDisk

{

startPoint (4.9 0.5 0.5);

endPoint (5.1 0.5 0.5);

thrust 5;

torque 0.5;

density 1.2;

interiorRadius 0.05;

exteriorRadius 0.2;

}

Change the endTime in system/controlDict to

endTime 1000;

Now we can run the case and have a look at it in paraFoam:

actuatorDiskExplicitForceSimpleFoam >& log

paraFoam

6 BASIC VALIDATION 25

Figure (7) shows the velocity magnitude on a plane with normal in the z-direction. The grey
object in the center is the outer surface of the actuator disk. As can be seen, the actuator disk
adds thrust to the fluid, resulting in a velocity field that is varying with the radial distance from
the actuator disk centerline. It should be noted that the actuator disk only adds momentum to
the fluid, it does not prevent flow through the outer surface of the actuator disk.

Figure 7: Velocity magnitude on a plane with normal in the y-direction

Figure (8) shows some streamlines, the outer surface of the acuator disk and arrows describing
the volume force added to the fluid. The streamlines are twisted, indicating that swirl is now being
imposed on the flow field. It is important that the cells belonging to the actuator disk region are
identified properly and that momentum is added only to those cells. As can be seen in figures (8)
and (9), all arrows describing volume force are located in the actuator disk region so no volume
force is added to cells outside the actuator disk. Hence, the cells belonging to the actuator disk
region have probably been identified properly. This can also be seen in figure (11), which shows
the magnitude of the volume force on a slice through the domain. The white line in the figure is
the outer surface of the actuator disk. As can be seen, the volume force is only nonzero in the
actuator disk region. It is once more noted that the volume force visualized in Paraview
is not the “true” volume force, what we see in Paraview is f/ρ, since we are dealing
with an incompressible solver.

A note should also be made on the total volume force written to the screen during simulation.
The new solver can run in parallel and will give correct results when run in parallel. However, the
information written to the screen during a parallel simulation gives the impression that something
is wrong, even though everything is correct. To be more specific, the wrong total force is written
to the screen, but the total force added to the fluid in the simulation is correct. This reason for
this is the following. When running in parallel, each processor can only “see” the cells in the
part of the mesh corresponding to that processor and thus also only the part of the actuator disk
corresponding to that part of the mesh. What is written to the screen is the data seen by one of
the processors. An example makes this clearer: assume that we prescribe a thrust of 48 kN and
that the fluid density is 1.2kg/m3 (see the literature case described below). Furthermore, assume
that we run on 4 threads and that we split the mesh in such a way that the actuator disk region
is split evenly between the 4 threads. In this case, the message written to the screen tells us that
the total volume force added is only approximately Ftot = 10e3. Due to this, we could suspect
that the volume force is not computed correctly. But the volume force written to the screen is
only a part of the total volume force added to the fluid, to be specific it is one fourth of the total
volume force since the simulation in this example was run on 4 threads and the actuator disk
region was split evenly between the threads. Therefore, the total normalized volume force added
is Ftot/ρ = 10e3 · 4 = 40e3. Hence, the volume force added is Ftot = 40e3 · ρ = 48e3 N , so the
correct volume force has indeed been added over the actuator disk region. It can be concluded
that the resulting volume force is correct even though it after a quick look at the information
written to the screen might seem to be wrong.

6 BASIC VALIDATION 26

Figure 8: Streamlines colored by velocity magnitude, outer surface of actuator disk (grey object)
and volume force (arrows).

Figure 9: Magnification of the actuator disk region in the figure above.

Figure (10) shows the grid in the actuator disk region.

6 BASIC VALIDATION 27

Figure 10: Grid in the actuator disk region.

Figure 11: Volume force on a slice through the domain. The volume force is only nonzero within
the actuator disk region, which is the region enclosed by the white line.

7 COMPARISON WITH A CASE FROM THE LITERATURE 28

7 Comparison with a case from the literature

The current actuator disk implementation will be validated against a case described in Mikkelsen’s
[3] thesis. Mikkelsen studied three dimensional actuator disk models applied to wind turbines. One
case considered is tunnel blockage, where a rotor affects the flow in the center of a tunnel. We will
study a case with a rotor built up of LM 19.1 blades. Relevant data for the blade and the case is
given in table (1).

Since the steps needed to perform a simulation with the new actuator disk class have already
been described in the Basic validation chapter, all steps will not be described in detail here.
The purpose now is to demonstrate and discuss the properties of the implementation rather than
describing technicalities about running the cases.

Rotor
Blade type LM 19.1
Total radius 20.5 m
Thrust coefficient CT ≈ 0.6
Power coefficient CP ≈ 0.4

Geometry and flow data
Freestream velocity V0 10 m/s
Rotational speed n 27.1 rpm

Table 1: Geometry and flow data for the case considered by Mikkelsen [3].

To be able to use our own actuator disk model, we need to compute the total thrust T and the
total torque Q from the above data. The estimate of the thrust and power coefficients given in
table (1) have been obtained from graphs given by Mikkelsen. The thrust is computed from the
thrust coefficient:

T =
ρV 2

0

2
πR2

PCT = 47.5 kN (9)

The torque is computed from the power which, in turn, is computed from the power coefficient:

P =
ρV 3

0

2
πR2

PCP = 316.9 kW (10)

n = 27.1⇒ ω = 2.838rad/s (11)

⇒M =
P

ω
= 112 kNm (12)

(13)

The size of the domain in the radial direction varies between 2R and 3.33R. The size in the axial
direction is chosen to be 5R in front of the rotor and 5R behind the rotor. The domain is shown
in figure (12). Figure (13) shows the graded mesh in the actuator disk region. It should be noted
that Mikkelsen used a cylindrical tunnel, but in the present simulations on the other hand, a
rectangular tunnel is used for convenience. The boundary conditions are summarized in table (2)
and the blockMesh and fvSolution files necessary for setting up the base case are given in appendix
(2).

Patch U p k ε
Inlet fixedValue (10 0 0) zeroGradient fixedValue 0.015 fixedValue 0.003
Outlet inletOutlet fixedValue 0 inletOutlet inletOutlet
walls slip zeroGradient zeroGradient zeroGradient

Table 2: Summary of boundary conditions.

7 COMPARISON WITH A CASE FROM THE LITERATURE 29

Figure 12: Domain for the tunnel blockage case. The thin ring is the actuator disk.

Figure 13: Grid in the actuator disk region.

7 COMPARISON WITH A CASE FROM THE LITERATURE 30

Figure (14) shows the axial velocity as a function of the radial distance from the actuator disk
centerline. The velocity was sampled far downstream from the actuator disk, at x = 203, where the
velocity profile has stabilized. The curves obtained from this simulation and the results obtained
by Mikkelsen [3] have the same shape except in a small region close to the actuator disk centerline
(r/R < 0.1). The reason for this is probably that different methods where used for estimating the
radial distribution of the volume force. In the present study, the volume force was assumed to
obey a Goldstein optimum distribution, which results in zero volume force at r

R = 0. As a result
nothing decelerates the fluid in the region close to r

R = 0. This leads to a higher velocity in this
region. In the study performed by Mikkelsen, on the other hand, the radial distribution of the
volume force was obtained through CFD analysis of the blade used. The result of this analysis
will probably be different from the idealized Goldstein optimum distribution.

Figure 14: Grid convergence of the axial velocity profile.

Figure (15) shows the axial velocity profile predicted with different tunnel diameters. The
diameter of the tunnel affects the velocity profile such that a smaller diameter shifts the velocity
curve upwards. This trend is also seen in the simulations performed by Mikkelsen. Visualizations
of the flow field can be seen in figures (16), (17), (18) and (19).

7 COMPARISON WITH A CASE FROM THE LITERATURE 31

Figure 15: Axial velocity profile for different tunnel diameters.

Figure 16: Streamlines and actuator disk region.

7 COMPARISON WITH A CASE FROM THE LITERATURE 32

Figure 17: Pressure distribution.

Figure 18: Velocity field.

7 COMPARISON WITH A CASE FROM THE LITERATURE 33

Figure 19: The arrows show the volume force added in the actuator disk region. The grey, thin
cylinder is the outer surface of the actuator disk region. The blue grid is an isosurface where the
velocity magnitude is 9 m/s and thus gives an indication of the extent of the region affected by the
rotor. Some streamlines are also shown.

8 SUMMARY 34

8 Summary

This tutorial has shown how to implement an actuator disk in OpenFOAM. The framework neces-
sary for identifying the cells belonging to an actuator disk region have been identified. A volume
force has been computed and added to a solver. The volume force as well as the outer surface of
the actuator disk region have been visualized.

A comparison have been made with a case described in Mikkelsen’s [3] thesis. The agreement
is reasonable, so the comparison shows that the overall behavior of a wind turbine rotor can be
predicted with the current implementation, but that discrepancies exist. It is concluded that the
framework that has been established in this work can be used, but it is probably wise to consider
adding a more accurate model of the volume force than simply assuming a Goldstein optimum
distribution a was done in this study.

References

[1] Goldstein, S: ’On the Vortex Theory of Screw Propellers’, Proceedings of the Royal
Society of London. Series A, Containing Papers of a Mathematical and Physical
Character, Vol. 123, No. 792 (1929), pp. 440-465

[2] Hough, G. R. and Ordway, D. E: ’The generalized actuator disk’, Technical Report
TAR-TR 6401, Therm Advanced Research, Inc. (1964)

[3] Mikkelsen, R: ’Actuator Disc Methods Applied to Wind Turbines’, Dissertation,
Technical University of Denmark (2003), ISBN 87-7475-296-0

[4] Note on the Body Force Propeller implementation in FINETM/Marine,
http://www.tfd.chalmers.se/˜hani/kurser/OS CFD/Actuator Disk.pdf

[5] The Visualization Toolkit (VTK): http://www.vtk.org

A Proof of formulas for Ax and Aθ

A.1 Ax

It is given that the axial volume force should be of the form:

fbx = Axr
∗√1− r∗ (14)

Furthermore, the volume force gives the total thrust T if:

T =

∫
V

fbxdV =

∫ RP

RH

fbx2πr∆dr (15)

Note that

r∗ =
r
′ − r′

h

1− r′
h

⇒ dr∗

dr
=

1

RP −RH
⇒ dr = (RP −RH) dr∗ (16)

r = RH + r∗ (RP −RH) (17)

http://www.tfd.chalmers.se/~hani/kurser/OS_CFD/Actuator_Disk.pdf
http://www.vtk.org

A PROOF OF FORMULAS FOR AXANDAθ 35

Insert (14) in (15) and change the variable of integration from r to r∗:

T =

∫ r=RP

r=RH

Axr
∗√1− r∗2πr∆ (RP −RH) dr∗ = {r = RP ⇒ r∗ = 1, r = RH ⇒ r∗ = 0} =

(18)

= 2π∆ (RP −RH)

∫ 1

0

Axr
∗√1− r∗ (RH + r∗ (RP −RH)) dr∗ =

(19)

= 2π∆ (RP −RH)Ax

RH ∫ 1

0

r∗
√

1− r∗dr∗︸ ︷︷ ︸
I

+ (RP −RH)

∫ 1

0

r∗2
√

1− r∗dr∗︸ ︷︷ ︸
II


(20)

Evaluation of the integrals I and II in the expressions above gives:

I =

∫ 1

0

r∗
√

1− r∗dr∗ =
4

15
(21)

II =

∫ 1

0

r∗2
√

1− r∗dr∗ =
16

105
(22)

Insert the numerical values of these intergrals in (20):

T = 2π∆ (RP −RH)Ax
4

105
(3RH + 4RP) (23)

⇒ Ax =
105

8

T

π∆ (3RH + 4RP) (rP −RH)
(24)

A.2 Aθ

The tangential force distribution is assumed to have a distribution of the form:

fbθ = Aθ
r∗
√

1− r∗
r∗
(
1− r′

h

)
+ r

′
h

(25)

r
′

h =
RH
RP

(26)

The volume force gives the total torque Q if:

Q =

∫
V

rfbθdV =

∫ RP

RH

rfbθ2πr∆dr (27)

B CASE FILES FOR THE TUNNEL BLOCKAGE CASE. 36

Insert (25) in (27) change variable of integration:

Q =

∫ RP

RH

rAθ
r∗
√

1− r∗
r∗
(
1− r′

h

)
+ r

′
h

2πr∆dr = (28)

= Aθ2π∆

∫ 1

0

(RH + r∗ (RP −RH))
2 r∗

√
1− r∗

r∗
(
1− r′

h

)
+ r

′
h

(RP −RH) dr∗ = (29)

= Aθ2π∆

∫ 1

0

[
RP

(
r
′

h + r∗
(

1− r
′

h

))]2 r∗
√

1− r∗
r∗
(
1− r′

h

)
+ r

′
h

RP

(
1− r

′

h

)
dr∗ = (30)

= Aθ2π∆R3
P

∫ 1

0

(
r
′

h + r∗
(

1− r
′

h

))
r∗
√

1− r∗
(

1− r
′

h

)
dr∗ = (31)

= Aθ2π∆R3
P

(
1− r

′

h

)[
r
′

h

∫ 1

0

r∗
√

1− r∗dr∗ +
(

1− r
′

h

)∫ 1

0

r∗2
√

1− r∗dr∗
]

= (32)

= Aθ2π∆RP (RP −RH)
4

105
(3RH + 4RP) (33)

⇒ Aθ =
105

8

Q

∆πRP (RP −RH) (3RP + 4RH)
(34)

B Case files for the tunnel blockage case.

B.1 fvSolution

1 /* --------------------------------*- C++ -*----------------------------------*\
2 | ========= | |
3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O peration | Version: 1.5 |
5 | \\ / A nd | Web: http ://www.OpenFOAM.org |
6 | \\/ M anipulation | |
7 *---*/
8 FoamFile
9 {

10 version 2.0;
11 format ascii;
12 class dictionary;
13 object fvSolution;
14 }
15 // * //
16
17 solvers
18 {
19 p PCG
20 {
21 preconditioner DIC;
22 tolerance 1e-07;
23 relTol 0.00001;
24
25 };
26 U PBiCG
27 {
28 preconditioner DILU;
29 tolerance 1e-07;
30 relTol 0.00001;
31 };
32 k PBiCG
33 {
34 preconditioner DILU;
35 tolerance 1e-06;
36 relTol 0.00001;
37 };
38 epsilon PBiCG
39 {
40 preconditioner DILU;
41 tolerance 1e-06;
42 relTol 0.00001;
43 };
44 R PBiCG
45 {
46 preconditioner DILU;

B CASE FILES FOR THE TUNNEL BLOCKAGE CASE. 37

47 tolerance 1e-05;
48 relTol 0.01;
49 };
50 nuTilda PBiCG
51 {
52 preconditioner DILU;
53 tolerance 1e-05;
54 relTol 0.01;
55 };
56 }
57
58 SIMPLE
59 {
60 nNonOrthogonalCorrectors 1;
61 }
62
63 actuatorDisk
64 {
65 interiorRadius 1.6;
66 exteriorRadius 20.5;
67 thrust 47.5e3;
68 torque 112.0e3;
69 density 1.2;
70 startPoint (103.0 0 0);
71 endPoint (102.0 0 0);
72 }
73
74 relaxationFactors
75 {
76 p 0.4;
77 U 0.4;
78 k 0.4;
79 epsilon 0.4;
80 R 0.4;
81 nuTilda 0.4;
82 }
83
84 // *** //

B.2 blockMeshDict

1 /* ---*\
2 | ========= | |
3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O peration | Version: 1.2 |
5 | \\ / A nd | Web: http ://www.openfoam.org |
6 | \\/ M anipulation | |
7 *---*/
8
9 FoamFile

10 {
11 version 2.0;
12 format ascii;
13
14 root "";
15 case "";
16 instance "";
17 local "";
18
19 class dictionary;
20 object blockMeshDict;
21 }
22
23 // * //
24
25 convertToMeters 1;
26
27 x0 0.0;
28 x1 102.50;
29 //x2 5.0;
30 x3 205.0;
31
32 y0 -41.0;
33 y1 41.0;
34
35 z0 -41.0;
36 z1 41.0;

B CASE FILES FOR THE TUNNEL BLOCKAGE CASE. 38

37
38 vertices
39 (
40 ($x0 $y0 $z0)
41 ($x1 $y0 $z0)
42 ($x1 $y1 $z0)
43 ($x0 $y1 $z0)
44 ($x0 $y0 $z1)
45 ($x1 $y0 $z1)
46 ($x1 $y1 $z1)
47 ($x0 $y1 $z1)
48 ($x3 $y0 $z0)
49 ($x3 $y1 $z0)
50 ($x3 $y0 $z1)
51 ($x3 $y1 $z1)
52);
53
54 blocks
55 (
56 hex (0 1 2 3 4 5 6 7) (80 64 64) simpleGrading (0.1 1 1)
57 hex (1 8 9 2 5 10 11 6) (80 64 64) simpleGrading (10 1 1)
58);
59
60 patches
61 (
62 patch inlet
63 (
64 (0 4 7 3)
65)
66 patch outlet
67 (
68 (9 11 10 8)
69)
70 wall walls
71 (
72 (0 1 2 3)
73 (1 8 9 2)
74 (0 1 5 4)
75 (1 8 10 5)
76 (4 5 6 7)
77 (5 10 11 6)
78 (3 7 6 2)
79 (2 6 11 9)
80)
81
82 // cyclic fan
83 // (
84 // (1 2 6 5)
85 // (8 12 15 11)
86 //)
87);
88
89 mergePatchPairs
90 (
91);

	Introduction
	Theoretical background
	Geometrical definition of an actuator disk
	The fan boundary condition in OpenFOAM
	Implementation of an actuator disk model
	Requirements on the new model
	General model structure
	Modification of simpleFoam
	Implementation of an actuator disk class
	actuatorDiskExplicitForce.h
	actuatorDiskExplicitForce.cpp
	actuatorDiskExplicitForceSimpleFoam.C
	UEqn.H
	createFields.H

	Basic validation
	Comparison with a case from the literature
	Summary
	Proof of formulas for Ax and A
	Ax
	A

	Case files for the tunnel blockage case.
	fvSolution
	blockMeshDict

