
Chalmers University of Technology

CFD with OpenSource software, Project

Patch deformation of a
divergent-convergent nozzle

Developed for OpenFOAM-1.5-dev

Author:
Daniel Grönberg

Peer reviewed by:
Jelena Andric

Johan Pilqvist

October 30, 2010



1 TUTORIAL DIVERGENT-CONVERGENT NOZZLE

1 Tutorial divergent-convergent nozzle

1.1 Introduction

This tutorial describes how to implement a boundary condition that deforms a patch axisymmetrical
at a divergent-convergent nozzle, and also make the internal mesh follow accordingly. It is done to
make a smooth transition in the expansion and compression of the nozzle. The new boundary con-
dition can be used at any type of cylindrical geometry, and it can be used for example to optimize
the flow through a nozzle. The boundary condition deforms patches according to the sinus function

Figure 1: The mesh with the different patches at the divergent-convergent nozzle.

1



1.2 Pre-processing 1 TUTORIAL DIVERGENT-CONVERGENT NOZZLE

1.2 Pre-processing

1.2.1 Getting started

Start by sourcing the OpenFOAM-1.5-dev version and download the divergent convergent nozzle
case into your $FOAM_RUN directory. The case can be downloaded from

http://www.tfd.chalmers.se/~hani/kurser/OS_CFD/

The geometry is based on the ERCOFTAC conical diffuser Case1 geometry [1][2]. The case is going
to use a modified version of the class, angularOscillatingVelocity, in order to get the patches
to deform as they should. Copy the angularOscillatingVelocity library to the run directory.

cp -r $FOAM_SRC/fvMotionSolver/pointPatchFields/derived/angularOscillatingVelocity \

$FOAM_RUN/

Rename folder and files

cd $FOAM_RUN

mv angularOscillatingVelocity libMySinusDeformationVelocity

cd libMySinusDeformationVelocity

mv angularOscillatingVelocityPointPatchVectorField.C \

libMySinusDeformationVelocityPointPatchVectorField.C

mv angularOscillatingVelocityPointPatchVectorField.H \

libMySinusDeformationVelocityPointPatchVectorField.H

Then change ”angularOscillating” to ”libMySinusDeformation” in the .C- and .H -files

sed -e "s/angularOscillating/libMySinusDeformation/g" \

libMySinusDeformationVelocityPointPatchVectorField.C > tmp.C

mv tmp.C libMySinusDeformationVelocityPointPatchVectorField.C

sed -e "s/angularOscillating/libMySinusDeformation/g" \

libMySinusDeformationVelocityPointPatchVectorField.H > tmp.H

mv tmp.H libMySinusDeformationVelocityPointPatchVectorField.H

Create the Make folder and in it create two files named files and options. Add the following lines
into the files -file

libMySinusDeformationVelocityPointPatchVectorField.C

LIB = $(FOAM_USER_LIBBIN)/libMySinusDeformationVelocity

and then go into the options -file and add the code below

EXE_INC = \

-I$FOAM_SRC/triSurface/lnInclude \

-I$FOAM_SRC/meshTools/lnInclude \

-I$FOAM_SRC/dynamicMesh/lnInclude \

-I$FOAM_SRC/finiteVolume/lnInclude \

-I$FOAM_SRC/fvMotionSolver/lnInclude

LIB_LIBS = \

-ltriSurface \

-lmeshTools \

-ldynamicMesh \

-lfiniteVolume \

-fvMotionSolver

move into libMySinusDeformationVelocityPointPatchVectorField.H -file an replace the de-
clared variables

2



1.2 Pre-processing 1 TUTORIAL DIVERGENT-CONVERGENT NOZZLE

vector axis_;

vector origin_;

scalar angle0_;

scalar amplitude_;

scalar omega_;

pointField p0_;

with the following variables

vector origin_;

pointField p0_;

vector axis_;

vector direction_;

scalar A_;

scalar periodic_;

scalar defTime_;

These variables are used to change the different settings that is used for the new boundary con-
dition, these are further explained in section 1.3 Boundary conditions.
Then move into libMySinusDeformationVelocityPointPatchVectorField.C -file and replace all
the old declared variables in the Constructors with the new ones

libMySinusDeformationVelocityPointPatchVectorField::

libMySinusDeformationVelocityPointPatchVectorField

(

const pointPatch& p,

const DimensionedField<vector, pointMesh>& iF

)

:

fixedValuePointPatchVectorField(p, iF),

axis_(vector::zero),

origin_(vector::zero),

angle0_(0.0),

amplitude_(0.0),

omega_(0.0),

p0_(p.localPoints())

{}

should be replaced with the following code

3



1.2 Pre-processing 1 TUTORIAL DIVERGENT-CONVERGENT NOZZLE

libMySinusDeformationVelocityPointPatchVectorField::

libMySinusDeformationVelocityPointPatchVectorField

(

const pointPatch& p,

const DimensionedField<vector, pointMesh>& iF

)

:

fixedValuePointPatchVectorField(p, iF),

origin_(vector::zero),

p0_(p.localPoints()),

axis_(vector::zero),

direction_(vector::zero),

A_(0.0),

periodic_(0.0),

defTime_(0.0)

{}

Repeat in a similar manner for the rest of the Constructors. Replace

libMySinusDeformationVelocityPointPatchVectorField::

libMySinusDeformationVelocityPointPatchVectorField

(

const pointPatch& p,

const DimensionedField<vector, pointMesh>& iF,

const dictionary& dict

)

:

fixedValuePointPatchVectorField(p, iF, dict),

axis_(dict.lookup("axis")),

origin_(dict.lookup("origin")),

angle0_(readScalar(dict.lookup("angle0"))),

amplitude_(readScalar(dict.lookup("amplitude"))),

omega_(readScalar(dict.lookup("omega")))

with the code below

libMySinusDeformationVelocityPointPatchVectorField::

libMySinusDeformationVelocityPointPatchVectorField

(

const pointPatch& p,

const DimensionedField<vector, pointMesh>& iF,

const dictionary& dict

)

:

fixedValuePointPatchVectorField(p, iF, dict),

origin_(dict.lookup("origin")),

axis_(dict.lookup("axis")),

direction_(dict.lookup("direction")),

A_(readScalar(dict.lookup("A"))),

periodic_(readScalar(dict.lookup("periodic"))),

defTime_(readScalar(dict.lookup("defTime")))

The last two Constructors are ordered in a similar way with the old variables, replace the old
code in the two last constructors

4



1.2 Pre-processing 1 TUTORIAL DIVERGENT-CONVERGENT NOZZLE

axis_(ptf.axis_),

origin_(ptf.origin_),

angle0_(ptf.angle0_),

amplitude_(ptf.amplitude_),

omega_(ptf.omega_),

p0_(ptf.p0_)

with the following new piece of code

origin_(ptf.origin_),

p0_(ptf.p0_),

axis_(ptf.axis_),

direction_(ptf.direction_),

A_(ptf.A_),

periodic_(ptf.periodic_),

defTime_(ptf.defTime_)

All the old variables should now have been replaced with the new ones. Go to the Member functions
and replace the following

void libMySinusDeformationVelocityPointPatchVectorField::write

(

Ostream& os

) const

{

pointPatchField<vector>::write(os);

os.writeKeyword("axis")

<< axis_ << token::END_STATEMENT << nl;

os.writeKeyword("origin")

<< origin_ << token::END_STATEMENT << nl;

os.writeKeyword("angle0")

<< angle0_ << token::END_STATEMENT << nl;

os.writeKeyword("amplitude")

<< amplitude_ << token::END_STATEMENT << nl;

os.writeKeyword("omega")

<< omega_ << token::END_STATEMENT << nl;

p0_.writeEntry("p0", os);

writeEntry("value", os);

}

with this piece of code

5



1.2 Pre-processing 1 TUTORIAL DIVERGENT-CONVERGENT NOZZLE

void libMySinusDeformationVelocityPointPatchVectorField::write

(

Ostream& os

) const

{

pointPatchField<vector>::write(os);

os.writeKeyword("axis")

<< axis_ << token::END_STATEMENT << nl;

os.writeKeyword("origin")

<< origin_ << token::END_STATEMENT << nl;

os.writeKeyword("direction")

<< direction_ << token::END_STATEMENT << nl;

os.writeKeyword("A")

<< A_ << token::END_STATEMENT << nl;

os.writeKeyword("periodic")

<< periodic_ << token::END_STATEMENT << nl;

os.writeKeyword("defTime")

<< defTime_ << token::END_STATEMENT << nl;

p0_.writeEntry("p0", os);

writeEntry("value", os);

}

Now the file is ready for the implementation of the axisymmetric patch deformation.

6



1.2 Pre-processing 1 TUTORIAL DIVERGENT-CONVERGENT NOZZLE

1.2.2 Implementation of patch deformation

To deform a patch axisymmetrically in three dimensions, the easiest way is to use a cylindrical
coordinate system. OpenFOAM uses Cartesian coordinates, therefore a conversion to cylindrical
coordinates has to be done. This conversion can be done by yourself or with the help of the class
cylidricalCS. This tutorial will go through how to convert it using the class cylidricalCS. The
deformation is going to be done in the radial direction with the displacement dr. The sinus function
is chosen since it has a shape of the desired deformation that makes the transitions smooth at the
expansion and compression regions of the nozzle.

dr = A sin(
2π

L
z − π) (1)

This function is displayed in Figure 2. The amplitude, A, is a user specified value of how much the

Figure 2: Patch deformation function

patch should deform. L, is the length of the patch along the axis in the flow direction. In this case
it happens to be along the z axis. This is specified so that the patch is deformed according to one
period of the function. The function has an angular displacement of the half of a period, so that the
function is passing through the origin of the coordinate system.
Move into the libMySinusDeformationVelocityPointPatchVectorField.C -file, and start the
modifications by adding

#include "cylindricalCS.H"

#include "mathematicalConstants.H"

at the beginning of the file, in order to use cylindricalCS and mathematical constants, such as
π.
Then go to the Member functions section.

7



1.2 Pre-processing 1 TUTORIAL DIVERGENT-CONVERGENT NOZZLE

void libMySinusDeformationVelocityPointPatchVectorField::updateCoeffs()

{

if (this->updated())

{

return;

}

const polyMesh& mesh = this->dimensionedInternalField().mesh()();

const Time& t = mesh.time();

const pointPatch& p = this->patch();

scalar angle = angle0_ + amplitude_*sin(omega_*t.value());

vector axisHat = axis_/mag(axis_);

vectorField p0Rel = p0_ - origin_;

vectorField::operator=

(

(

p0_

+ p0Rel*(cos(angle) - 1)

+ (axisHat ^ p0Rel*sin(angle))

+ (axisHat & p0Rel)*(1 - cos(angle))*axisHat

- p.localPoints()

)/t.deltaT().value()

);

fixedValuePointPatchVectorField::updateCoeffs();

}

The patch is deformed in this section. So this should be edited according to the following.

void libMySinusDeformationVelocityPointPatchVectorField::updateCoeffs()

{

if (this->updated())

{

return;

}

const polyMesh& mesh = this->dimensionedInternalField().mesh()();

const Time& t = mesh.time();

const pointPatch& p = this->patch();

// Locates the boundaries at the patch

boundBox bb(p0_, true);

vectorField p0Rel = p0_ - origin_;

vector dr;

vectorField sd=p0Rel;

vectorField p0Relc=p0Rel;

scalar L;

8



1.2 Pre-processing 1 TUTORIAL DIVERGENT-CONVERGENT NOZZLE

// Defines the patch length

if ( axis_[0] == 1 || axis_[0] == -1)

{

L=bb.max()[0]-bb.min()[0];

}

if ( axis_[1] == 1 || axis_[1] == -1)

{

L=bb.max()[1]-bb.min()[1];

}

if ( axis_[2] == 1 || axis_[2] == -1)

{

L=bb.max()[2]-bb.min()[2];

}

// Implementing the class cylindricalCS

cylindricalCS ccs("ccs",origin_,axis_,direction_);

// Conversion Cartesian coordinates to cylindrical coordinates at the patch

p0Relc=ccs.localVector(p0Rel);

forAll(p0_,iter)

{

// Deformation according a sinus function in cylindrical coordinates

dr = vector(A_*sin(((2*mathematicalConstant::pi)/L)*p0Relc[iter][2]-

mathematicalConstant::pi),p0Relc[iter][1], 0);

// Conversion from deformation in cylindrical to Cartesian coordinates

sd[iter] = ccs.globalVector(dr);

};

scalar multipl = 1;

// For periodic b.c.

if ( periodic_ == 1 )

{

// Revese motion for periodic b.c.

if ((int)floor(t.value()/defTime_)% 2 != 0) multipl = -1;

}

// No motion

else if ((periodic_ == 0) && (t.value()> defTime_)) multipl = 0;

vectorField::operator=

(

sd *multipl / defTime_

);

fixedValuePointPatchVectorField::updateCoeffs();

}

This field in the updateCoeffs() section will update the mesh for every time-step gradually accord-
ing to the specified deformation function until deformation time is reached. The patch deformation
is defined to deform the patch in the chosen flow direction, that is along either x, y or z axis. The
origin of the deformation should always be specified at the start of the patch along the specified
axis. For example if the patch is starting at the z-value 0, where the flow direction is the same as
the z-axis, then the origin and axis should be specified as (0 0 0) and (0 0 1) respectively. It
should also be mentioned that the deformation will always act in the normal direction of the patch.
The variable p0_ is a point field, which will be given all point coordinates of the patch.

9



1.2 Pre-processing 1 TUTORIAL DIVERGENT-CONVERGENT NOZZLE

cylindricalCS ccs("ccs",origin_,axis_,direction_);

The line above is a constructor where the object ccs of the class cylindricalCS is made with the
arguments in the brackets to define how the cylindrical coordinate system should be constructed.
A deeper investigation of how cylindricalCS works will be described in section 2 cylindricalCS.
The origin_ and axis_ are stated as above. The direction_ is however, an input of how the
angles should be calculated in the cylindricalCS class. With the example above, where the axis is
(0 0 1), the direction should be specified as (1 1 0). cylindricalCS uses the direction_ vector
to calculate the radial and angular directions. The cylindrical coordinate system will begin at the
angle of 0 degrees on the positive x-axis and move 180 degrees to the negative x-axis when y is
larger than 0. When y is smaller than 0, the angles will go from 0 to -180 degrees instead. The
radial direction will always originate at the flow direction axis. The conversion from Cartesian to
cylindrical coordinates are done at the points of the patch with ccs.localVector.

p0Relc=ccs.localVector(p0Rel);

Here the p0Rel is a vectorfield with the stored locations of the points at the patch relative to the
specified origin in Cartesian coordinates. The p0Relc is the same as p0Rel but in cylindrical coor-
dinates. The deformation takes place in the radial direction according to the specified sinus function.

dr = vector(A_*sin(((2*mathematicalConstant::pi)/L)*p0Relc[iter][2]-

mathematicalConstant::pi),p0Relc[iter][1], 0);

The deformation will originate from the patch and deform the patch by moving its points by the
distance dr according to the function. Variable L is the length of the patch at the flow direction
axis. This makes the patch deform exactly as one full period of the specified function. In order
for OpenFOAM to deform the patch, the deformation has to be done in Cartesian coordinates.
ccs.globalVector will take care of this.

sd[iter] = ccs.globalVector(dr);

Here the deformation in cylindrical coordinates will be converted to Cartesian coordinates for every
point at the patch by using the class cylindricalCS again. The following piece of code was originally
implemented by Helgason, Eysteinn [3], and it offers an opportunity to choose if the patch deforma-
tion should be reversed, or, if the deformation should stop, when deformation time is reached. The
t.value() is the current time-step.

scalar multipl = 1;

// For periodic b.c.

if ( periodic_ == 1 )

{

// Revese motion for periodic b.c.

if ((int)floor(t.value()/defTime_)% 2 != 0) multipl = -1;

}

// No motion

else if ((periodic_ == 0) && (t.value()> defTime_)) multipl = 0;

vectorField::operator=

(

sd *multipl / defTime_

);

If the defTime_ is set to 0.2 and periodic_ is set to 1, then the patch deforms as usual until
time 0.2 is reached. Then between 0.2 and 0.4 it is reversed, i.e it goes back to its original po-
sition. At 0.4 - 0.6 the patch deforms as usual again, and this is repeated over and over. The

10



1.3 Boundary conditions 1 TUTORIAL DIVERGENT-CONVERGENT NOZZLE

vectorField::operator= is calculating the deformation by using velocities. Therefore the defor-
mation distance, sd, should be divided by the deformation time, defTime_, to get the deformation
velocities of the points in the patch. The boundary condition is now ready to be compiled. Compile
with the following command while standing in the libMySinusDeformationVelocity directory.

wclean

wmake libso

1.3 Boundary conditions

In order to deform the patch as wanted, the new boundary condition has to be set at the patch in
pointMotionU -file, which determines the velocity of each point as the patch deforms [4]. This file
can be found in the 0 directory in the case folder. In this tutorial the boundary condition is set as
below for the wall in the expansion of the nozzle. The values can be changed to make the patch
deform as wanted.

wall2

{

type libMySinusDeformationVelocity;

origin (0 0 0);

axis (0 0 1);

direction (1 1 0);

A 0.014;

periodic 0;

defTime 0.1;

value uniform (0 0 0);

}

The origin, axis and direction are as explained earlier in section
1.2.2 Implementation of patch deformation. The amplitude of the sinus function can be con-
trolled with A. This variable has a limitation in magnitude, and this magnitude will be different
for different cross-section sizes. This is because of a limitation on how much the cell volumes can
decrease, and the difficulty for the cell volumes to adapt into the small throat that is created due
to the deformation. The sign of the amplitude determines the direction of the function normal to
the patch. The periodic option can be either 0 or 1. The defTime will control at which time the
deformation will be completed. So if defTime is 0.1, the deformation at the patch will start from
0 and deform gradually until time 0.1, where the patch will have the shape as the specified sinus
function. If periodic has a value of 1 the deformation will be reversed at time 0.1 and the shape of
the patch will return to its original state at time 0.2. Then the same procedure is repeated, hence
a periodic motion is created. The same boundary condition is set for wall4, but with a reversed sign
of the amplitude, to get the smooth transition even when the pipe is compressed. The rest of the
patches in the pointMotionU -file is set to zero, since they are not going to be deformed. In the
velocity file, U, the inlet velocity is set to 1 m/s and the outlet to velocity gradient of 0. wall1, wall3
and wall5 are set to 0 m/s and act as fixed walls. In the pressure file, p, the outlet pressure is set to
0 Pa, and the rest of the patches are set to 0 pressure gradient.

1.4 Initiate solver settings

The last step before the case can be solved, is to edit the controlDict -file to look like the following

11



1.4 Initiate solver settings 1 TUTORIAL DIVERGENT-CONVERGENT NOZZLE

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 1.5 |

| \\ / A nd | Web: http://www.OpenFOAM.org |

| \\/ M anipulation | |

\*---------------------------------------------------------------------------*/

FoamFile

{

version 2.0;

format ascii;

class dictionary;

object controlDict;

}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

application icoFoamAutoMotion;

startFrom startTime;

startTime 0;

stopAt endTime;

endTime 1;

deltaT 4e-03;

writeControl timeStep;

writeInterval 4;

purgeWrite 0;

writeFormat binary;

writePrecision 6;

writeCompression uncompressed;

timeFormat general;

timePrecision 6;

runTimeModifiable yes;

adjustTimeStep no;

maxCo 0.2;

libs ("libMySinusDeformationVelocity.so");

// ************************************************************************* //

12



1.5 Running the code 1 TUTORIAL DIVERGENT-CONVERGENT NOZZLE

The solver that is going to be used is a modified icoFoam solver that can do dynamic meshes, and
it is called icoDyMFoam. In order to use this, the application should be set to icoFoamAutoMotion;.
At the last line, the path to the new boundary condition is added in order for the solver to recognize
and use it. The icoDyMFoam solver also needs an additional file in the constant directory called
dynamicMeshDict, which looks like

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 1.5 |

| \\ / A nd | Web: http://www.OpenFOAM.org |

| \\/ M anipulation | |

\*---------------------------------------------------------------------------*/

FoamFile

{

version 2.0;

format ascii;

class dictionary;

object motionProperties;

}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

dynamicFvMesh dynamicMotionSolverFvMesh;

solver velocityLaplacian;

diffusivity uniform;

// ************************************************************************* //

This file basically specifies how the internal mesh should move when the boundary is moving when
the icoDyMFoam solver is used. The dynamicMotionSolverFvMesh is a mesh-manipulation model
that is used for dynamic meshes where the topology of the mesh remains the same. The solver
determines which equation that should be solved to create the motion of the mesh. Here it is set to
velocityLaplacian, which solves the Laplacian of the diffusivity and cell motion velocity [4]. The
velocityLaplacian uses the pointMotionU file to do this. The diffusivity is set to uniform,
which will make the internal mesh deform uniformly when the boundary is moving.

1.5 Running the code

Mesh the geometry and solve the case

cd $FOAM_RUN/dcn

blockMesh

icoDyMFoam

13



1.6 Post-processing 1 TUTORIAL DIVERGENT-CONVERGENT NOZZLE

1.6 Post-processing

Three calculations are going to be presented, one without any deformation the second with a defor-
mation of the expansion and compression walls at the amplitude of 0.014 and the last is performed
with the amplitude of 0.04. The deformation time was set to 0.1s and the deformation as non-
periodic. Since the result that shows how the fluid behaves is not the main purpose of this tutorial,
the velocity pictures were taken after just 0.2s. The velocity figures is presented only to show how
the post-processing can be done, therefore no further flow analysis has been done.

1.6.1 Pre-deformation

(a) Original mesh (b) A clip at the center of the mesh

(c) Velocity at time time 0.2s (d) A zoom of the undeformed patch and internal mesh

Figure 3: Undeformed mesh

14



1.6 Post-processing 1 TUTORIAL DIVERGENT-CONVERGENT NOZZLE

1.6.2 Deformation with amplitude of 0.014 at time 0.2s

(a) Deformed mesh (b) A clip at the center of the mesh

(c) Velocity at time time 0.2s (d) A zoom of the deformed patch and internal mesh

Figure 4: Deformation with an amplitude of 0.014

15



1.6 Post-processing 1 TUTORIAL DIVERGENT-CONVERGENT NOZZLE

1.6.3 Deformation with amplitude of 0.04 at time 0.2s

(a) Deformed mesh (b) A clip at the center of the mesh

(c) Velocity at time time 0.2s (d) A zoom of the deformed patch and internal mesh

Figure 5: Deformation with an amplitude of 0.04

16



2 CYLINDRICALCS

2 cylindricalCS

This section is dedicated to explain how cylindricalCS works, and how it can be implemented in
general. First, lets have a look at the constructors in cylindricalCS.H

// Constructors

//- Construct null

cylindricalCS();

//- Construct from components

cylindricalCS

(

const word& name,

const point& origin,

const vector& axis,

const vector& direction

);

//- Construct from origin and rotation angles

cylindricalCS

(

const word& name,

const point& origin,

const coordinateRotation& cr

);

//- Construct from dictionary

cylindricalCS(const word& name, const dictionary& dict);

These constructors will define how the cylindrical coordinate system should be built. So if one
writes for example:

cylindricalCS ccs("ccs",(0 0 0),(0 0 1),(1 1 0);

the cylindrical coordinate system will be constructed from an origin and two axes. How the compo-
nents are stored in cylindricalCS is shown in the table below

Input Type Stored
”ccs” word ⇒ name
(0 0 0) point ⇒ origin
(0 0 1) vector ⇒ axis
(1 1 0) vector ⇒ direction

The coordinate system can also be constructed from a dictionary or an origin and rotation. cylindricalCS
can convert a vector or a vector field, as presented in 1.2.2 Implementation of patch deformation.

p0Relc=ccs.localVector(p0Rel);

Here the p0Rel is a vector field that is converted to a vector field, p0Relc, in cylindrical coor-
dinates. At the top of the cylindricalCS.H, the coordinateSystem.H -file is included. The
coordinateSystem class is generally used to rotate coordinate systems. cylindricalCS uses it to
convert vectors and vector fields from global Cartesian vector to components in local coordinate
system. Since the global coordinate system is in Cartesian coordinates, the local coordinate sys-
tem is going to be converted into cylindrical coordinates. This is done in the following part of the file.

17



2 CYLINDRICALCS

//- Convert from global Cartesian vector to components in

// local coordinate system

vector localVector(const vector& global) const

{

return globalToLocal(global, false);

}

//- Convert from global Cartesian vector to components in

// local coordinate system

tmp<vectorField> localVector(const vectorField& global) const

{

return globalToLocal(global, false);

}

The ccs.localVector is written in order to be returned as a globalToLocal vector or vector field in
the local coordinate system that will become the cylindrical coordinate system. To convert cylindrical
vectors or vector fields components to Cartesian coordinate system components, ccs.globalVector
has to be specified to the vector or vector field in your code. the coordinateSystem.H will then
convert from local to global coordinate system components, and return a localToGlobal vector or
vector field. This is displayed below

//- Convert from vector components in local coordinate system

// to global Cartesian vector

vector globalVector(const vector& local) const

{

return localToGlobal(local, false);

}

//- Convert from vector components in local coordinate system

// to global Cartesian vector

tmp<vectorField> globalVector(const vectorField& local) const

{

return localToGlobal(local, false);

}

After this is done the cylindricalCS will use these new vectors or vector fields and calculate
the components into the wanted coordinate system. This is performed in the Member functions
section in the cylindricalCS.C -file. The first part shown below will convert from Cartesian to
cylindrical coordinates.

Foam::vector Foam::cylindricalCS::globalToLocal

(

const vector& global,

bool translate

) const

{

const vector lc =

coordinateSystem::globalToLocal(global, translate);

return vector

(

sqrt(sqr(lc.x()) + sqr(lc.y())),

atan2(lc.y(),lc.x())*180.0/mathematicalConstant::pi,

lc.z()

);

18



2 CYLINDRICALCS

}

Foam::tmp<Foam::vectorField> Foam::cylindricalCS::globalToLocal

(

const vectorField& global,

bool translate

) const

{

const vectorField lc =

coordinateSystem::globalToLocal(global, translate);

tmp<vectorField> tresult(new vectorField(lc.size()));

vectorField& result = tresult();

result.replace

(

vector::X,

sqrt(sqr(lc.component(vector::X)) + sqr(lc.component(vector::Y)))

);

result.replace

(

vector::Y,

atan2(lc.component(vector::Y), lc.component(vector::X))*

180.0/mathematicalConstant::pi

);

result.replace(vector::Z, lc.component(vector::Z));

return tresult;

}

The globalToLocal from coordinateSystem.H vector will be placed in vector lc. First, the
Pythagoras’ theorem is used at the local x and y components in order to calculate the radial compo-
nents. Then arctan will be used at the same components to create the angular direction converted
from radians to degrees. The same procedure is done on a vector field. The new vector components
are now created and returned into the globalToLocal vector that is linked to cylindricalCS.H.
The conversion from cylindrical to Cartesian components is done in the following part

Foam::vector Foam::cylindricalCS::localToGlobal

(

const vector& local,

bool translate

) const

{

scalar theta =

local.y()*mathematicalConstant::pi/180.0;

return coordinateSystem::localToGlobal

(

vector(local.x()*cos(theta), local.x()*sin(theta), local.z()),

translate

);

}

19



2 CYLINDRICALCS

Foam::tmp<Foam::vectorField> Foam::cylindricalCS::localToGlobal

(

const vectorField& local,

bool translate

) const

{

scalarField theta =

local.component(vector::Y)*mathematicalConstant::pi/180.0;

vectorField lc(local.size());

lc.replace(vector::X, local.component(vector::X)*cos(theta));

lc.replace(vector::Y, local.component(vector::X)*sin(theta));

lc.replace(vector::Z, local.component(vector::Z));

return coordinateSystem::localToGlobal(lc, translate);

}

The local y component is converted from degrees to radians. Then the Cylindrical components
will be converted to components in Cartesian coordinates. As before, the same procedure is done
for vector fields. To sum up the previous explanations transformations are presented in the table
below.

Input Type Coordinatesystem Type Coordinatesystem
localVector vector Cartesian ⇒ vector Cylindrical
localVector vectorField Cartesian ⇒ vectorField Cylindrical
globalVector vector Cylindrical ⇒ vector Cartesian
globalVector vectorField Cylindrical ⇒ vectorField Cartesian

20



3 REFERENCES

3 References

[1] H. Nilsson, M. Page, M. Beaudoin, B. Gschaider and H. Jasak. The openFOAM Turbomachinery
Working Group, and Conclusions from the Turbomachinery Session of the Third OpenFOAM
Workshop. 24th IAHR Symposium on Hydraulic Machinery and Systems, October 27-31, 2008,
Foz Do Iguassu, Brazil.
http://www.tfd.chalmers.se/~hani/pdf_files/IAHR2008turboWG.pdf

[2] O. Bounous. Studies of the ERCOFTAC Conical Diffuser with OpenFOAM. Research Report
2008:05, Applied Mechanics, Chalmers University of Technology, Sweden, 2008. Presented at
the Third OpenFOAM Workshop in Milano, July 9-11, 2008.
http://www.tfd.chalmers.se/~hani/pdf_files/OmarReport_Complete.pdf

[3] Helgason, Eysteinn 2008: ”Point-wise deformation of mesh patches”
http://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2008/EysteinnHelgason/

EH_PatchDeformReport.pdf

[4] Moradnia, Pirooz 2007: ”A tutorial on how to use Dynamic Mesh solver IcoDyMFoam”
http://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2007/PiroozMoradnia/

OpenFOAM-rapport.pdf

21


