icoFoam: Cavity

- Cavity According to manual
- CavityFine According to manual
- CavityGraded and cavityHighRe are merged. Map fields from cavityFine onto the graded mesh, lower viscosity and run long enough to get convergence

Anton Berce

icoFoam: Cavity

Anton Berce

icoFoam: Cavity

• Timestepsize: 2.5 [ms]

• Number of cells: 400

Anton Berce

Cavity

- Initial solution from cavityFine case

Graded Mesh and High Reynolds Number

(nu=0.0005, 20 times smaller than original)

solidDisplacementFoam: plateHole

- Iterations: 150
- Number of cells: 1000
- Found that for the original 100 iterations the solution was not fully converged, so I changed it to 150. The change was also applied in the sampleDict.

solidDisplacementFoam: plateHole

- New Mesh
- Refined around hole
- Graded
- Initial solution mapped from original case
- Small differences can be seen around the hole

Anton Berce

interFoam: damBreak

Fine

Coarse

time = 0.75s

• Original and Fine Mesh

• Big differences between the two meshes

Anton Rerce

PotentialFoam: cylinder

- Solved and analytical case displayed below
- Slightly different

Anton Berce

simpleFoam: pitzDaily

• 50 iterations

• 500 iterations

• 1000 iterations

Anton Berce

sonicFoam: forwardStep

• Simulation in sonicFoam

• Inlet velocity U_x = Mach 3

• Inlet pressure $p_{inlet} = 1Pa$

sonicLiquidFoam: decompressionTank

- Case: Decompressiontank
- Fine Mesh has 32 times more cells
- Quite big difference in speed of shockway
- Contribution to knowledge of reader: Label of colorbar
- Turn off "Automatic Label Format" in the "Color Legend" tab. Set the Label Format to "%6gPa" to add "Pa" after the numbers of the colorbar.

mhdFoam: Hartmann

- Case: Hartmann
- Flow of electro-conducting fluid through a magnetic field
- B, magnetic flux density, is changed from 20 to 1
- Result: Magnetic field has less impact on the flow

