CFD with OpenSource software, project

Implementing "chtMultiRegionFoam" Solver for Electric Welding

Alireza Javidi October 2010

Introduction

SO 1

schematic sketch of electric welding

The solver is based on combination of *heatConductionFoam* and *buoyantFoam* for conjugate heat transfer between a solid region and fluid region

OpenFoam – 1.5

•solidWallTemperatureCoupled

r	my Interface Patch Name		
{			
	type	solidWallTemperatureCoupled;	
	neighbour Region Name	fluid;	
	neighbour Patch Name	fluidSolidInterface;	
	neighbour Field Name	T;	
	K	K;	
	value	uniform 300;	
}			

OpenFoam – 1.5

•solidWallHeatFluxTemperature

my Interface Patch Name			
{			
	type	solidWallHe	at Flux Temperature;
	K	K;	< Name of K field >
	q	uniform 1000	; < Heat flux $[W/m2]$ >
	value	300.0;	< Initial temperature [K] >
}			

OpenFoam – 1.5

solidWallHeatFluxTemperatureCoupled

myWallPatchName		
{		
	type	solid Wall Heat Flux Temperature Coupled;
	neighbour Region Name	fluid;
	neighbour Patch Name	fluidSolidInterface;
	neighbour Field Name	T;
	K	K;
	value	uniform 300;
}		

OpenFoam – 1.6

•solidWallHeatFluxTemperature

$m_{\tilde{t}}$	myInterfacePatchName		
{			
	type	solidWallHe	eatFluxTemperature;
	K	K;	< Name of K field >
	q	uniform 1000); < Heat flux $[W/m2]$ >
	value	300.0;	< Initial temperature [K] >
}			

OpenFoam – 1.6

solidWallMixedTemperatureCoupled

myInterfarcePatchName	
{	
type	solidWallMixedTemperatureCoupling;
neighbourFieldName	Τ;
К	К;
value	uniform 300;
}	

Geometry and mesh

geometry of the test case with two different regions

•setset - batch makecellSets.setset (to define region sets)

• sets To Zones -noFlip Map (to add zones to the mesh with similar sets name)

• splitMeshRegions -cellZones -overwrite (to split mesh into multiple regions)

Case structure

50 L

Boundary conditions

FoamFile {	
version format class location object	2.0; ascii; volScalarField; "0"; T;
} // * * * * *	
dimensions internalField boundaryField {	[0001000]; uniform 300;
maxY {	
type valu } minX {	fixedValue; uniform 100;
type valu } maxX	zeroGradient; ne uniform 300;
{ type valu } minZ {	zeroGradient; ne uniform 300;
type value } maxZ	zeroGradient; uniform 300;
type value }	zeroGradient; uniform 300;
topAir_to {	_bottomSolid
type value neigh	solidWallMixedTemperatureCoupled; uniform 300; bourFieldName T;
} }	К;

Boundary conditions

-----/ FoamFile Ł 2.0; version format ascii; class volScalarField; location "0"; object Т; } [0001000]; dimensions internalField uniform 300; boundaryField ł minX { zeroGradient; type value uniform 300; } maxX { type zeroGradient; value uniform 300; } minZ { type zeroGradient; value uniform 300; } maxZ { type zeroGradient; uniform 300; value } minY £ fixedValue; type uniform 2000; value ł bottomSolid_to_topAir { solidWallMixedTemperatureCoupled; type uniform 300; value neighbourFieldName T; ĸ К; } }

Thermal conductivity

Solid region:

K=80, cp=450

Fluid region:

K= *cp***mu***rPr*

Mixture gasName n W cp Hf mu Pr

Results

temperature distribution in both solid and fluid region

Results

50 L

temperature distribution in both solid and fluid region

Maxwell equation

$$\nabla \cdot (\sigma_m \nabla \phi) = 0,$$
$$j = -\sigma_m \nabla \phi.$$

Electric conductivity

```
fvMesh& mesh = solidRegions[i];
volScalarField& rho = rhos[i];
volScalarField& sigmaMag = sigmaMags[i];
volScalarField& ElPot = ElPots[i];
volScalarField& cp = cps[i];
volScalarField& K = Ks[i];
volScalarField& T = Ts[i];
```

Electric conductivity

```
Info<< "
            Adding to ElPots\n" << endl;
ElPots.set
(
    i,
    new volScalarField
    (
        IOobject
        (
            "ElPot",
            runTime.timeName(),
            solidRegions[i],
            IOobject::MUST READ,
            IOobject::AUTO WRITE
        ),
        solidRegions[i]
    )
);
Info<< "
            Adding to sigmaMags\n" << endl;
sigmaMags.set
    i,
    new volScalarField
        IOobject
            "sigmaMag",
            runTime.timeName(),
            solidRegions[i],
            IOobject::MUST READ,
            IOobject::AUTO WRITE
        ),
        solidRegions[i]
```

Electrical potential equation

```
// Solve equation for electric potential ElPot
//Info << " Solve the electric potential equation " << endl;
Info<< "debut VEqn.H - sigmaMag max/min : " << max(sigmaMag).value() << "
" << min(sigmaMag).value() << endl;
{
    solve
        (
            fvm::laplacian(sigmaMag, ElPot)
        );
}</pre>
```

Boundary conditions

\ *	/ب
FoamFile	*/
roamriie	
version	2.0:
format	asci:
class	wolScalarField.
location	"O".
object	FlPot:
1	51100,
, // * * * * * *	* ** * * * * * * * * * * * * * * * * * *
dimensions	[1 2 -3 0 0 -1 0]:
internalField	uniform 0;
boundaryField	
{	
maxY	
{	
type	fixedValue;
value	uniform -2;
}	
minX	
{	
type	zeroGradient;
}	
maxX	
{	
type	zeroGradient;
}	
minZ	
{	
type	zeroGradient;
}	
maxZ	
{	
type	zeroGradient;
}	
topAir_to_bot {	ctomSolla
type	solidWallMixedTemperatureCoupled;
value	uniform 0;
neighbo	purfieidName ElPot;
, K	sigmaMag;
, 1	
1	
// **********	***************************************
//	

Boundary conditions

[
*	*/
FoamFile	
/	
1	2.0.
version	2.0;
format	ascii;
class	volScalarField;
location	"0";
object	FlPot:
1	21100,
1	
// * * * * * *	* * * * * * * * * * * * * * * * * * * *
* * //	
dimensions	[1 2 -3 0 0 -1 0];
internalField	uniform 0:
Inocraticia	difference of
boundaryField	
{	
minY	
{	
type	fixedValue:
value	uniform 3.
vaiue	difform 5,
}	
minX	
{	
type	zeroGradient;
3	,
mayy	
indan (
1	
type	zeroGradient;
}	
minZ	
{	
type	zeroGradient:
1 L	Zerooraareno,
· · · · · · · · · · · · · · · · · · ·	
maxz	
{	
type	zeroGradient;
}	
bottomSolid	to topAir
1	
1 time	anlidWallMivedTemperatureCoupled.
сура	sofiumarinixeuremperaturecoupieu;
value	uniform U;
neighb	ourFieldName ElPot;
K	sigmaMag;
}	
3	
Ľ	
// *********	***************************************
1	

Results:

SO 1

Results:

50 L

electric potential field with the same electric conductivity in fluid and solid regions

Results:

50 L

electric potential field with different electric conductivity in fluid and solid regions

Conclusions and future works

• The laplacian electric potential equation can be implemented as a coupling boundary condition between different regions in *"chtMultiRegionFoam"* solver.

• For extending the model to temperature dependent solid parameters the future work can be to implement materila quantities via the library "thermophysicalModels", as done for the corresponding quantities in the fluid region.