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“Users should approach all software with 
prudent caution and healthy skepticism, for the 

history of science and engineering,including 
the still-young history of software engineering, 

is littered with failed promises.” 
 

 
Henry Petroski, “Failed Promises”  

American Scientist, Vol. 82, Jan-Feb. 1994, pp.6-9. 
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Symbols and notations 
 

a  Axial induction 
a’  Tangential induction 
A  Rotor area 
C  Chord length 
CL    Lift coefficient 
CD  Drag coefficient 
Cp  Pressure coefficient 
Ct   Tangential force coefficient 
Cn  Axial force coefficient  
D  Drag force 
Ft   Tangential force pr. meter 
Fn   Axial force pr. meter 
k   Turbulent kinetic energy  
L   Lift force 
m&   Mass flow rate 
N  Number of blades 
p  Static pressure 
P  Total pressure 
Pn    Pressure in tangential direction 
Pt   Pressure in axial direction 
r   Local radius 
R   Rotor radius 
Re   Reynolds number  
T     Thrust force 
V0   Wind speed 
Vrel  Relative speed 
Vr  Velocity component in Radial direction 
Vt  Velocity component in Tangential direction 
Vz   Velocity component in Axial direction 
 
α    Angle of attack 
ε    Turbulent dissipation 
φ   Angle of the relative velocity  

ν    Laminar viscosity 
ν t   Eddy viscosity 
ω      Angular velocity 
ρ   Density 
σ   Solidity of rotor 
∞    Conditions at infinity 
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Abstract 
 
 

The aim of this paper is to develop a CFD model in order to simplify the modeling of the flow 

induced by a helicopter rotor in hover flight. The main rotor blades are considered as a whole 

disc where diverse velocities and pressures are applied. If this simplification provides good 

results, the modeler will obtain high-quality approximations of the aerodynamic flow induced 

by the helicopter blades, whatever its number and its geometry design.  

 

 

Two approaches are extended in order to validate this simple model: 

 

The purpose of the first part is to apply as boundary conditions, the data provided by a 

mathematical study realized by J.T. Conway. The interest is to check if it is possible to input 

the initial conditions in commercial CFD code Fluent 5.5 and compare the results obtained 

with the mathematical ones. In fact, the different velocities above and below have to be 

evaluated in order to validate the model. 

 

The second approach is more ambitious because a FORTRAN program is created in order to 

predict the thrust and tangential forces on each blade.  The predicted data will then be 

implemented within the CFD code Fluent 6.1. Eventually, an evaluation and a validation of 

this new model is done. 

 

 

 

Whatever the approach, the purpose is to obtain a simple method that enables the simulation 

of the flow induced by helicopter rotor in hover flight. If this methodology is approved, it 

should be easy to apply to other cases. 
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Résumé 

 
La finalité de ce stage est de développer une méthode de simulation numérique qui 

simplifierait la modélisation des écoulements induits par les rotors d’hélicoptères en vol 

stationnaire. Le principe premier est de considérer les pâles du rotor principal comme un 

disque plein duquel des pressions et des vitesses débitantes seraient générées.  

 

Si la méthodologie est approuvée, le modélisateur aura la possibilité de travailler avec un 

modèle de haute qualité définissant l’écoulement d’air quelque soient le nombre de pâles ou la 

géométrie de cette dernière. 

 

 

 

Deux approches sont abordées afin de valider ce projet : 

 

Le propos de la première partie est d’appliquer en conditions limites, les données fournies par 

une étude mathématique réalisée par J.T.Conway. L’intérêt est de savoir s’il est possible 

d’introduire ces conditions dans Fluent 5.5 et de comparer les résultats avec ceux obtenus par 

la méthode mathématique. 

 

La seconde approche est plus ambitieuse puisque un programme FORTRAN est généré afin 

de prédire la poussée et les forces tangentielles sur chaque pâle. Les données sont ensuite 

implantées dans le code commercial Fluent 6.1. Finalement, une évaluation des résultats et 

leurs validations est faite. 

 

 

Quelque soit l’approche, le but cette démarche est de créer une méthode simple qui soit 

capable de simuler l’écoulement induit par les pâles d’un rotor principal d’hélicoptère en vol 

stationnaire. Si cette méthodologie est approuvée, il devrait être facile de l’employer dans 

d’autres cas beaucoup plus complexes. 
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A 
First Approach 
Comparison of a 

CFD model – Semi-analitical Method 
 

- 1 - 

Fundamentals of rotor aerodynamics: Momentum theory 

 

• Conservation laws of fluid mechanics 

• Application to hovering rotor 

• Rotor Power 

• Pressure variation 

 

- 2 - 

Exact actuator disk solutions for non-uniform heavy loading and slipstream 

contraction developed by J.T.Conway. 

 

• General problem 

• Propellers with slipstream rotation 

 

- 3 - 

Data provided by Conway (1998) 
 

- 4 - 

First CFD approach of the problem 

 

- 5 - 

CFD simulation of the problem 
 

• First grid 

• Second grid 
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- 1 - 

Fundamentals of rotor aerodynamics 

Momentum theory 

 
Hover is a unique flight condition. Here, the rotor has zero forward speed and zero vertical 

speed. The rotor flow field is, therefore, axisymmetric. With the measurements of the velocity 

field near and below a hovering rotor, we can note that the fluid velocity increases smoothly 

as it is entrained into and through the rotor disk plane. There is no jump in the velocity across 

the disk, although thrust is produced, so there must be a jump in pressure over the disk. With 

physical pictures of the hovering rotor flow, it is possible to apply a mathematical solution to 

this problem. Consider the application of three basic conservation laws (conservation of mass, 

momentum and energy) to the rotor and it flow field. 

 

This approach is called momentum theory, and was first developed by Rankine (1865) for 

marine propellers. The theory was developed further by Froude (1889) and Betz (1920). The 

main difference between Rankine and Froude theories is in the treatment of the rotor disk as a 

series of elementary rings, versus the treatment of the disk as a whole. 

 

 

 

Conservation laws of fluid mechanics 
 

In the general approach to the problem, it will be assumed that the flow through the rotor is 

one dimensional, quasi steady, incompressible and inviscid. Consider an ideal fluid, that is, 

one of that generates no viscous shear between fluid elements. Therefore, induced losses are a 

sole source of losses in the fluid, with other losses resulting from the action of viscosity being 

assumed negligible. 
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Figure a1: Flow model used for  momentum theory analysis of a rotor in axial flight. 

 

 

A general equation governing the conservation of fluid mass applied to this finite control 

volume can be written as 

 

0.. =∫∫ SdV
S

rr
ρ   (eq a.1) 

 

Similarly, the conservation of fluid momentum equation can be written as 

 

VSdVSdpF
SS

rrrrr
)...(. ∫∫∫∫ += ρ   (eq a.2) 

 

Thirdly, an equation governing the conservation of energy can be written as 
2

)...(
2
1 VSdVW

S

rrr
∫∫= ρ   (eq a.3) 

 

 

 

Application to hovering rotor 
 

These general equations of fluid mass, momentum, and energy conservation may now be 

applied to the specific problem of a hovering rotor. This corresponds to the condition Vc=0 on 

figure a1, the velocities are Vi at the plane of the rotor and W in the far wake. The principle of 

conservation of mass can be applied, 
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dSVdSVm ∫∫∫∫ ==
∞ 2

....
rr

& ρρ   (eq a.4) 

 

 

The principle of conservation of fluid momentum gives the relationship between the rotor 

thrust T, and the net time rate of change momentum out of the control volume (Newton’s 

second law), 

 

VSdVVSdVTF
rrrrrrr

)..()..(
0∫∫∫∫ −==

∞
ρρ   (eq a.5) 

 

 

Because in hovering flight, the velocity well upstream of the rotor is quiescent, the second 

term is zero, 

 

VSdVT
rrr

)..(∫∫∞= ρ   (eq a.6) 

 

 

wmT .&=   (eq a.7) 

 

 

From the principle of conservation of energy, the work done on the rotor is equal to the gain 

in energy of the fluid per unit time. The power consumed by the rotor is P and this results in 

the equation, 

 

2

0

2 )..(
2
1)..(

2
1 VSdVVSdVP

rrrrrr
∫∫∫∫ −=

∞
ρρ   (eq a.8) 

 

2)..(
2
1 VSdVP

rrr
∫∫∞= ρ   (eq a.9) 

 

2.
2
1 wmP &=   (eq a.10) 
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Rotor Power 
 

It has been shown previously that momentum theory can be used to relate the rotor thrust to 

the induced velocity at the rotor disk by using the equation 

 
2...2.)..( ivAwmVSdVT ρρ === ∫∫∞ &

rrr
  (eq a.11) 

 

 

So, the power required to hover is given by 

A
TvTP i ρ2

.
2/3

==   (eq a.12) 

 

 
2...2 ivAP ρ=   (eq a.13) 

 

 

This power, called ideal power, is entirely induced in nature because the contributions of 

viscous effects have not been considered in the present level of analysis. 

 

 

Pressure variation 
 

The pressure variation through the rotor flow field in the hover state can be found from the 

application of Bernoulli’s equation along the streamline above and below the rotor disk. This 

equation cannot be applied across the disk, because the pressure jump is a result of energy 

addition by the rotor. 

 

2
10 .

2
1

ivppp ρ+== ∞   (eq a.14) 

 

Below the disk, between 2 and ∞ , the application of Bernoulli’s equation gives 

 

22
2 .

2
1.

2
1 wpvp i ρρ +=+ ∞   (eq a.15) 
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So, one can write 

A
Tppp =−=∆ 12   (eq a.16) 

 

 

The momentum method has permitted a preliminary evaluation of rotor performance in hover. 

Despite this advantage in providing an insight into the basic theory of the rotor problem, it has 

many limitations. For example, it provides no information about the distribution of load over 

the blade. That is the reason why some people are currently developing mathematical theories 

about heavily loaded actuator disk with non-uniform loading. 

 

 

 

- 2 - 
Exact actuator disk solutions for non-uniform heavy loading and 

slipstream contraction developed by J.T.Conway. 

 
(J. Fluid Mech. (1998) Vol. 365, pp 235-267) 

 

 

A semi analytical method has been developed to solve for the inviscid incompressible flow 

induced by a heavily loaded actuator disk with non-uniform loading. This method is an 

extension of the analytical theory of Conway (1995) for the linearized actuator disk and is 

exact for an incompressible perfect fluid. 

 

 

General problem 
 

In a recent publication in 1995, Conway derived analytical solutions for the entire flow field 

induced by a linearized actuator disk with essentially arbitrary radial load distribution. The 

method was based on the construction of the velocities and vector potential of the ring vortex 

as integrals over the allowed values of the separation constant of the solutions of Laplace’s 
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equations in cylindrical coordinates. The velocities calculated by this method were finite and 

continuous everywhere. 

 

The purpose of the article dated on 1998, is to present the extension of this method to the 

generalised nonlinear actuator disk, subject to the important restriction that the vortex density 

in the slipstream remains bounded. 

 

 

Propellers with slipstream rotation 
 

This case will be studied with a commercial CFD code. These results will be applied on the 

disk later with the set boundary conditions. 

 

The whole mathematical theory is available in the Journal of Fluid Mechanics. To summarise 

this article without going into too much detail, it provides three velocity profiles in different 

points above and below the heavy disk. So, it would be possible to know if the numerical 

calculations made with “Fluent 5.5” and “Fluent 6.0” give results close in comparison to the 

mathematical predictions. 

 

 

- 3 - 
Data provided by Conway (1998) 

 
In his article published in 1998, J.T.Conway gives the profiles of axial velocity Vz(r,z), of 

radial velocity Vr(r,z) and azimuthal (or tangential) velocity Vθ(r,z). However, the paper does 

not specify the equation curves. So, coordinate points are taken from the paper, which are 

interpolated. 

 

On the figures a2, a3 and a4, the red lines are the interpolations; a visual comparison of  the 

results approximations with the curves taken from the Journal of Fluid Mechanics can be 

intereresting . 
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Figure a2: Radial velocity profile as function of the radial coordinates r  normalised on the rotor. 
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Figure a3: Azimuthal velocity profile as function of the radial coordinates r normalised on the rotor. 
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Figure  a4: Axial velocity profile as function of the radial coordinates r  normalised on the rotor. 
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Choosing a right order of approximation is difficult. This is why  several interpolation orders 

are used to conserve the best profile. 
 

With this mathematical work, the information needed (i.e. equations)  are available; the 

equations are: 

 

 

Axial velocity  

U
Vz  = -1.9033*(r/R)4 + 1.8453*(r/R)3 - 0.3065*(r/R)2 + 0.2897*(r/R) + 0.0507 

 

Azimuthal velocity  

U
Vθ  = -1.5006*(r/R)2 + 1.4972*(r/R) + 0.0018 

Radial velocity  

U
Vr  = 6.4961*(r/R)5 - 12.301*(r/R)4 + 7.3631*(r/R)3 - 2.2472*(r/R)2 + 0.4579*(r/R) - 0.0008 

 

 

 

It is possible to write that the velocity profiles are polynomial equations: 

 

∑
=

=
4

0
)(

j

j
j

z

R
rA

U
V

  ∑
=

=
2

0
)(

j

j
j R

rB
U
Vθ   ∑

=

=
5

0
)(

j

j
j

r

R
rC

U
V

 

 

 

j Aj Bj Cj 

0 0,0507 0,0018 0,0008 

1 0,2897 14,972 0,4579 

2 -0,3065 -15,006 -2,2472 

3 1,8453 - 73,631 

4 -1.9033 - -12,301 

5 - - 64,961 
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- 4 - 

First CFD approach of the problem 
 

To solve this problem with the Fluent commercial  code, it is necessary to specify in the CFD 

code the azimuthal and radial velocities, and the jump of pressure but the pressure jump 

equation is not known. For this, the first CFD case is created with a real disk to obtain the 

total pressure. 

It is assumed that there is no interaction between the flow above the disk and the flow below 

the disk if the total pressure is solved infinitely close to the disk. 

In order to apply the velocity profiles, a program in C language (called User Defined 

Functions) is created.  

 

Making a complex grid of this geometry is not necessary, except near the rotor disk. As a 

result, the pressure profile is solved for the next simulation. The curve equation is obtained 

with a sixth order interpolation. 
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Figure  a5: Example of Total pressure  profile as function 

of the radial coordinates r  normalised on the 

rotor calculated with Fluent. 
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- 5 - 
CFD simulation of the problem 

 

 

The geometry is quite simple because there is only a disk (without thickness) in a square 

domain. The only difficulty is limiting the size of the domain (for the reason that the meshes 

would be too numerous) but it cannot be too small (because no interaction with the 

boundaries would exist). 

 

 

 

 

First grid 
 

The first mesh is not adapted to this case. It assumes that the most important study zone is 

below the disk. That is why the smallest meshes are in this region and the mesh size increases 

progressively. It is essential to note that a lot of adapted grids have been tested to observe 

their differences and their defaults and to increase accuracy.  The number of unstructured 

meshes comes to nearly 415 000. 

 

 

 

 

 

 

 

 

 

 

 
Figure a6 : triangular meshes  on the rotor 

and tetrahedral meshes in the domain. 
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Figure a7: Geometry 

 

 

The SIMPLE algorithm is used for the pressure-velocity coupled equation and the 

powerlaw algorithm for the Momentum equations. 

The material set is air with a viscosity of 1,7894.105 kg/m.s and a density of 1,225 kg.m-3. 

The viscous model is the k- ε model standard because it provides good curve convergence. 

The segregated solver is used in order to solve the Vz, Vr, and Vθ momentum equations. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 Figure a8: Boundary conditions 

Pressure  
Outlet 

Symmetry 

Fan 

Interior 

Various  
Volumes  

Pressure  
Outlet 



 20

Results and discussion 
 

The advantages are: 

 

• The boundary conditions on the disk provide good approximations. 

• There is no interaction between the flow induced by the rotor and the limit of the 

domain.  

 

The disadvantages are: 

 

• Convergence is difficult because a lot of iterations are necessary. 

• The convergence criterion is 10-3  because better results are really impossible to obtain 

with this grid. 

• The Pressure under-relaxation factor is changed to obtain better convergence.  

 

 

 
Figure a9: Contour of Dynamic Pressure on a plane 
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Figure  a10: Velocity vectors (on the lines) coloured 

by Velocity magnitude 

 

 

Second grid 
 

Another grid is used in order to know what differences result;  To control the mesh 

generation, thirty-three volumes are created. All the interfaces between the two volumes are 

declared “interior faces” so as too not interfere with the flow.  

The number of cells produced is nearly 215000. The boundary conditions, viscous model (k- ε 

model standard) and algorithms are similar to the previous case. 

 

It is important to note that the number of nodes on the rotor is increased after 500 iterations 

(with “hanging nodes menu” in Fluent) to obtain accuracy values on the rotor. 
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      Figure a11: Mesh on the rotor (Quad)  Figure a12: Volumes        Figure a13: Grid 

 

Results and discussion 
As it is possible to see on figure a14, the curves of convergence seem to be very good and the 

convergence criterion is lower than all the previous cases, which have been tested. 

 The thrust calculated is about 1000 Newton. That  inferes that, if the helicopter is in hover 

flight, a helicopter weight of 100Kg is expected. 
 

 
Figure a14 : Scaled residual 
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Figure a15: Differences between the first mesh  (A) and the second one (B) ; 

Visualization and Comparison of the contour of velocity magnitude on a plane 

 

 

The boundary conditions on the disk gives good approximations. Checking the curves for 

jump of pressure on the rotor verifies the initial conditions.With this new cylindrical 

domain and its quadrilateral mesh, the convergence criterion is 3,4 .10-10 . 

It is obvious from the results to say (observing the figure a15 about contour of velocity 

magnitude) that the second grid provides more accurate results. The results are similar to a 

numerical study made by the AIAA with another adapted Navier-Stokes CFD code after  

grid adaptation to this case.  

 

 

Furthermore, this new mesh provides smooth visualisation, which corresponds to the 

reality of  rotor aerodynamics. 
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 On figure a15.A, the contour of velocity magnitude depends of the number and especially 

the node shapes. In opposition to this problem, the second mesh provides results 

independent of the grid. 

 

 

 

 

 
Figure  a16: pathlines coloured by dynamic pressure 
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Figure  a17: Velocity vectors on X-lines (A)  and  on the disk (B) coloured by Velocity magnitude 

 
 

 

 

 

Figure a16 shows the pathlines taken by the dynamic pressure. When the flow goes through 

the disk, the particle velocity increases. In addition to the acceleration phenomenon, a vortex 

is generated by the rotor.   

 

It is noted that the flow velocity increases before the rotor, but the jump of velocity (induced 

by the actuator disc model) provides accurate values. 

 

Figure a17.A provides information about the velocity vectors on different lines above and 

below the rotor. The rotor draws in the flow and accelerates it. Below the disk, it is easy to 

observe the vortex generation (with figure a17.B) and to note that the velocities are very low: 

• in the middle of the disc, 

• and close to the boundary of the disc.  
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Figure a18: axial velocity profiles below the rotor as function 

of the radial coordinates r  normalised 

 

 

 

 

 

 
 

Figure a19: radial velocity profiles below the rotor as   Figure a20: tangential velocity profiles below the rotor as  

      function of the radial coordinates r  normalised    function of the radial coordinates r  normalised 
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Figures a18, a19 and a20 show the different velocity profiles as a funtion of the radius at 

different z coordinates. Considering the axial velocity, the results are not similar to Conway’s, 

especially after the coordinate 1−=
R
z . It is not surprising because the analitical method used 

in his work is so different than the one proposed by the CFD commercial code Fluent 5.5.  

 

To summarise, three velocity profiles and one jump pressure profile must be applied. Even if 

applying the velocities and pressure values required is not simple, a good approximation can 

be made in order to obtain the right thrust value.  

 

 

For this example: 

 

The mass flow rate provided by the rotor is:  

 

m& =50.467 kg/s 

 

The velocity magnitude integral on the rotor is: 

 

43.61.
2

=∫∫ dSV
r

 m3.s-1 

 

Vaverage=  
S
43.61  

 

Vaverage =19.55 m.s-1 

 

 

An approximation of the thrust induced by the rotor is given as: 

 

averageVmT .&=  

 

T= 986.82 N 
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In hover flight, the weight of the helicopter should be approximately 100,59 kg. In order to 

know with accuracy this weight, it would be insightful to introduce the fuselage and its 

characteristics (like the vertical drag CDv) in the calculation. 

 

 

 

 

A real rotor would give a higher thrust value. For this, if CFD simulations should be realised 

in the future, the jump of pressure will be more realistic but the velocity profiles should be 

identical. 

 

Even if the CFD calculations do not provide perfect and expected results, knowledge has been 

developed in order to, in the next chapter, obtain a complete study. 
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B 
Second Approach  

“Blade Element Momentum (BEM)” and “CFD” 
coupled Calculations for Helicopter in Hover Flight 

 
 

1. Theoretical work 
 

1.1. Actuator disc model 
 

1.2. Blade Element Theory 
 
2. Programme generation 
 

2.1. Algorithm 
 

2.2. Subroutine 
 

2.3. Structure of the programme 
 
3. Results and discussion 
 
4. Data implementation in FLUENT  
 

4.1. Implementation 
 
4.2. Geometry and Meshes 
 
4.3. Numerical Procedure 
 
4.4 Results and discussion 
 

• Validation with the total pressure and thrust  
• Streamlines functions 
• Dynamic Pressure on the disc 
• Velocity profiles 
• Velocity on the z-axis 
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The main interest of this part is to develop a FORTRAN programme in order to obtain the 

Thrust and Tangential forces distribution.  From this, It is possible to implement these Forces 

in the CFD commercial code FLUENT via the Actuator Disc Model, with the purpose to 

determine the flow induced by this modeling method. 

 

 

Various methods can be used to calculate the aerodynamic forces acting on the blades of a 

wind turbine. The most advanced is numerical methods solving the Navier-Stokes equations 

for the global compressible flow as well as the flow near the blades. The two major 

approaches to calculate the forces are the Actuator Disc Model and the Blade Element Model. 

In the following sections, a brief introduction of both mentioned methods are presented. 

 

 

 

1. Theoretical work.  
 

This theoretical part is a summary of a thesis written by Anders Ahlström, entitled 

“Simulating Dynamical Behaviour of Wind Power Structures” (Royal Institute of Technology 

Department of Mechanics, in Stockholm (2002)). The introduction focus on the qualitative 

results and the basic assumptions that are made. 

 

1.1. Actuator disc model 
 

The actuator disc model is based on Bernoulli’s equation and energy balances. It’s assumed 

that the rotor is replaced by an actuator disc, through which the static pressure decreases 

discontinuously. The fluid is assumed incompressible. 

 



 31

 
figure b1: Flow pattern inside the streamtube. 

 

 

The streamtube has a cross-sectional area smaller than the cross-sectional area for the 

upstream disc and a larger area than the downstream disc. Within the streamtube, continuity is 

required and the rate of the mass flow must be constant. 

 

www UAUAUAm ρ=ρ=ρ= ∞∞∞ 000&      (eq b.1) 

 

By introducing an axial interference factor, a, as the fractional decrease in wind velocity 

between the free stream and the rotor plane represented by 

 

∞

=
U

va  (eq b.2) 

with  Uinf  is the undisturbed air speed 

 v is free stream velocity 

 

it is found that 

 

( )aUU −= ∞ 10  (eq b.3) 

 

The air, which goes through the disc. The velocity multiplied by the flow rate gives the rate of 

change of momentum, more known as a force 
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( )wUUmT −= ∞&  (eq  b.4) 

 

Combining the equations above with the fact that the change of momentum comes entirely 

from the pressure difference across the actuator disc, it is obtained that 

 

( ) ( )aUUUpp w −−=− ∞∞
−+ 1.. 000 ρ    (eq b.5) 

 

To obtain the pressure difference, the Bernoulli´s equation is applied separately to the 

upstream and downstream section of the streamtube. For the upstream section it becomes 

 

+
∞∞ +ρ=+ρ 0

2
0

2

2
1

2
1 pUpU   (eq b.6) 

 

Similarly, for the downstream 

 

−
∞ +ρ=+ρ 0

2
0

2

2
1

2
1 pUpU w    (eq b.7) 

 

Subtracting (eq b.7) from (eq b.6) yields 

 

( )22
00 2

1
wUUpp −ρ=− ∞

−+    (eq b.8) 

 

As the fluid is incompressible, Equation (eq b.8) and (eq b.5) gives 

 

( )aUU w 21 −= ∞  (eq b.9) 

 

The force, T, is obtained by substituting (eq b.9), (eq b.3) and (eq b.1) into (eq b.4), which 

gives 

 

( )aaUAT −ρ= ∞ 12 2
0   (eq b.10) 
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Combining (eq b.3), (eq b.9) and the rate of work done by the force, P = T.U0, the power 

extraction from the air is obtained as 

 

( )23
0 12 aaUAP −ρ= ∞    (eq b.11) 

 

or, by introducing the dimensionless power-coefficient, ( )21 aaC p −=  

 

pCUAP 3
02 ∞ρ=   (eq b.12) 

 

The power-coefficient represents the efficiency of the turbine, which depends on variables 

like the wind speed, the rotor speed and the pitch angle. The coefficient shows how much of 

the kinetic energy in the air stream that is transformed into mechanical energy.  

 

 

 

 

1.2. Blade Element Theory 

 
 

While using of aero elastic codes in design calculations, the aerodynamic method has to be 

efficient CPU time. The Blade Element Momentum (BEM) theory, has been shown to give 

good accuracy with respect to time cost. 

In this method, the turbine blades are divided into a number of independent elements along 

the length of the blade. At each section, a force balance is applied involving 2D section lift 

and drag with the thrust and torque produced by the section. At the same time, a balance of 

axial and angular momentum is applied. This produces a set of non-linear equations, which 

can be solved numerically for each blade section. 
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Figure b2: problem description 

 

In Section “1”, only the force in the flow direction was considered. The BEM theory also 

takes notice of the tangential force due to the torque in the shaft. The lift force L per unit 

length is perpendicular to the relative speed Vrel of the wind and equals 

 

Lrel CVcL 2

2
ρ

=   (eq b.13) 

Where CL is the lift coefficient. 

 

Where c is the blade cord length. The drag force D per unit length, which is parallel to Vrel is 

given by 

 

Drel CVcD 2

2
ρ

=    (eq b.14) 

 

Where CD is the drag coefficient. 

 

Since we are interested only in the forces normal and tangential to the rotor-plane, the lift and 

drag are projected in these directions  
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FN = L cos φ + Dsin φ   (eq b.15) 

 

And 

FT = L sin φ . Dcos φ   (eq b.16) 

 

The theory requires information about the lift and drag aerofoil coefficients CL and CD. Those 

coefficients are generally given as functions of the angle of incidence (see Figure). 

 

α = φ -  θ   (eq b.17) 

where  α  is the angle of attack  

ϕ  is the angle of the relative velocity 

 

Further, it is seen that 

 

( )
( )wra

Ua
′+

−
=ϕ ∞

1
1

tan   (eq b.18) 

 

In practice, the coefficients are obtained from a 2D wind-tunnel test. If α  exceeds about 150, 

the blade will stall. This means that the boundary layer on the upper surface becomes 

turbulent, which will results in a radical increase of drag and a decrease of lift. The lift and 

drag coefficients need to be projected in the same way as the forces FN and FT. CN and CT are 

calculated as follow: 

 

CN = CL cos φ + CD sin φ   (eq b.19) 

 

And 

 

CT = CL sin φ - CD cos φ   (eq b.20) 

 

Further, a solidify σ is defined as the fraction of the annular area in the control volume, which 

is covered by the blades 
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Disc

Blades

Area
Area

=σ    (eq b.21a) 

 

so in the cylinder system of coordinate ),,( zr ψ , 

 

( ) ( )
r
Nrcr

π
=σ

2
   (eq b.21b) 

 

where N denotes the number of blades. 

 

The normal force dT and the torque dQ on the control volume of thickness dr, is since FN  and 

FT are forces per length 

 

 

( )
drCc

aU
N.

1
.

22

φ
−

ρ== ∞
2N sin

N 
2
1.drN.F  dT    (eq b.22) 

and 

 

( )( )
drrCc

aawrU
T ...

.
1.1..

.
φφ

ρ
 cos sin

N 
2
1.drr.N.F dQ T

′+−
== ∞   (eq b.23) 

 

 

Finally, the two induction factors are declared by 

 

1
.

sin4
1
2

+
σ

φ
=

NC

a   (eq b.24) 

 

1
.

cossin4
1

−
=′

TC

a

σ
φφ

  (eq b.25) 
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Figure b3: The local forces and velocity components on the blade 

 

 

 

2. Programming 
 

2.1. Algorithm 

 

All necessary equations have now been derived for the BEM model. Since the different 

control volumes are assumed to be independent, each strip may be treated separately and 

therefore the results for one radius can be computed before solving for another radius.  

 

 

 

For each control volume, the algorithm can be divided into eight steps: 

 

1.  Initialize a and a’, typically a0 = a0’ = 0. 

2.  Compute the flow angle, φ, using (eq b.18). 

3.  Compute the local angle of attack using (eq b.17). 
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4.  Read CL(α) and CD(α) from a subroutine. 

5.  Compute CN and CT  from (eq b.19) and (eq b.20). 

6.  Calculate a and a’ from (eq b.24) and (eq b.25). 

7.  If η<− −1ii aa and η<− − '' 1ii aa where η  is a tolerance, then stop else 

go to step 2. 

8. Compute the local forces on each element of the blades. 

 

 

2.2. Subroutine 

 
The main part of this subroutine was written in Fortran77 by Dr James Marchman and his 

research group (Virginia Polytechnic Institute and State University, USA). The author used 

his research work to calculate drag and lift coefficients.  

 

The code can work without this subroutine (because the using of CD and CL data tables is 

possible) but choosing the “NACA number” (defining the blade geometry) or the number of 

pressure nodes are alternatives more interactive and so, more flexible. 

 

Moreover, in the future, when twisted blades are studied, this subroutine will represent the 

simplest configuration in opposition to multiple Data Tables in many Data files. 

 

This subroutine admits the Classic Hess and Smith Method. A.M.O. Smith at Douglas 

Aircraft directed an incredibly productive aerodynamics development group in the late ’50s 

through the early ’70s. The description of the implementation of the theory given above that 

originated in his group is available on the Aerospace and Ocean Engineering Department 

Website (Virginia Polytechnic Institute).  

The approach consists in: 

i) Breaking up the surface into straight line segments 

ii) Assuming the source strength is constant over each line segment (panel) but has a 

different value for each panel 

iii) Assuming that the vortex strength is constant and equal over each panel. 
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2.2.1. Subroutine principles 

 

The subroutine defines the surface for NACA four or five digit airfoil shapes and 

automatically places panels on that surface. It gives the chosen airfoil shape and the pressure 

coefficient distribution. 

 

With the information about the induced angle of attack, it is possible to calculate the pressure 

coefficients, i.e. the lift and drag coefficients. As it was shown in the first part, the steps of the 

programme are as following: 

 

1. Data’s inputs are the NACA number of the uniform blade, and the induced angle of 

attack (which is calculated by the main programme).  

 

2. All the nodes of the body shape are solved in order to calculate everywhere the 

pressure coefficients. 

 

3. Coefficients of linear system are determined. 

 

4. Solutions of linear algebraic system by Gaussian elimination with partial pivoting are 

found. 

 

5. The pressure distribution is determined. 

 

6. Finally, the lift and drag coefficients are computed. Cd and Cl are input in the main 

programme. 

 

 

The above-mentioned steps are followed at each iteration. It is easy to understand that this 

programme needs a lot of memory for the computer used. That is why a nodes limit will 

be applied in the future. 

 

2.2.2. Example 

 

In order to show how this subroutine works, an example is made for this configuration:  
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 NACA number: 23012 

 Angle of attack: 6 degrees 

 Number of nodes: 90 
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 Figure b4: Shape of NACA 23012 
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Figure b5: Pressure coefficient on the blade 

 

 

The results provide the ninety points on the body shape of the bidimensionnal airfoil. As it 

is possible to see in figure b4, the profile is actually respected. 

Curves about repartitions of intrados and extrados Cp are given. Other coefficients are 

available:  

 The lift coefficient is 8,5461.10-1 

 The drag coefficient is –4,2.10-4 
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The interest is not to know the shape or the Cp but the programme needs this data to solve 

equations and to get CD and CL. These coefficients are input in the main programme.  

 

To conclude, it’s assumed that this subroutine (which will be integrated in the main 

programme) works and provides accurate results. 

This Smith-Hess panel method for single element lifting airfoil in 2-D incompressible 

flow will be used in the next chapter but it’s admitted that this subroutine is independent 

of the Reynolds number. 

 

 

2.3. Structure of the programme 
 

 

INPUT: 
     

 

 

   

 

 

 

 
 
 

General Blades characteristics Blades geometry 

Number of Elements Angle of attack. NACA number 

∞U  Radial velocity Chord 

 Number of blades Length 

  Hub 
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    Initialisations 
 

   Compute the flow angle φ:       
( )
( ) ra

Ua
..1

1
tan

ω
ϕ

′+
−

= ∞  

 
   
   
Compute the local angle of attack.    Subroutine: 

    α  = φ -  θ              Method for single element lifting airfoil  
         in 2-d (incompressible flow) 

   
            Set coordinates of nodes on body surface. 
 

CL(α) and CD(α) compute with    The pressure distribution is     
 the aerofoil subroutines.      determined. 

    
              Lift and Drag coefficients (CL(α) 

and CD(α)) are computed. 
 

Compute CN and CT by: 
CN = CL cos φ + CD sin φ 
CT = CL sin φ - CD cos φ 

 
 

Calculate a and a’ from equations below:  

 
1

.
sin4

1
2

+
σ

φ
=

NC

a
1

.
cossin4
1

−
=′

TC

a

σ
φφ

    

 
Tests 

 (a-aprevious<ε )  and (a’-a’previous<ε ’) 
 
 
        No Satisfied    Satisfied 

OUTPUT 
Compute the local forces  
on each element of the 

blades. 
 
 
The whole programme is available in the appendices with all the explanations about the  
subroutines. 
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3. Results and discussion 
 

In the simple momentum theory for an actuator disc, the flow conditions and aerodynamic 

loads are assumed constant in the azimuthal and radial direction. Furthermore this theory is 

only valid for lightly loaded discs with an infinite number of blades. 

 

Initial conditions are the same than another CFD study realized by another student from this 

department. 

  ρ    =  1,125 kg.m3  air density 

   Rhub =  0,3 m    hub 

   θ   =  8 degrees  blade angle of attack 

      ω  =   30.π rad.s-1  velocity angle 

c = 0,16 m   chord 

n     =    4   number of blades 

Length =  1,7 m   length of the blades 

   U ∞   =  35.6 m.s-1  Velocity upstream 

   Naca  =  20012  naca number 

 

Each element has the same size as the other ones. For this case, the blade is non twisted but 

the inflow ratio is non uniform. Several configurations are performed various number with 

of elements to define the profiles. 
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Figure b6: Fn with different numbers of element   Figure b7: Forces repartition on the blade 
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The results compared themselves when the numbers of blades changes, in order to check the 

behaviour of T. Three numbers are tested: 20,40,80.  

If the total thrust on the four blades is quantified, it’s easy to conclude that the results are 

quite similar: 

For 20 elt, T1 = 5811,749 N; 

For 40 elt, T2 = 5760,633 N; 

For 80 elt, T3 = 5734,453 N; 

It seems that T tends a constant value when the number of element increases. For example, 

the numerical error between T1 and T3 are: 1,33%. 

In order to compare the results given by the Fortran programme with another works, the same 

initial conditions are taken. The number of 60 elements is chosen because it’s good alternative 

between the time and memory costs and the forces repartition accuracy.  

So, finding forces repartition on the blade with this FORTRAN programme is now easy. On 

the figure b8 is shown the thrust and tangential forces with the initial conditions taken here. 

Figure b7 is only presented to have an idea of normal forces on one blade versus tangential 

forces induced by the blade rotation around the rotor and not to get a quantitative result. 
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Figure b8: Thrust and tangential force repartitions on the blade 
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As can been seen on the figure b8, the error bars are very small when it is compared to the 

tangential forces values. Representative results are revealed that the thrust Fn is bigger than Ft 

everywhere. Obviously, the NACA profile is studied to provide this effect.  The tangential 

force decreases after 0.6m-Radius in opposition to the thrust, which increases until 1.7 m 

radius and decreases a little bit at the end of the blade. 

 

Moreover, the thrust is big after 1-meter radius. So, if the blade were divided in two parts, the 

bigger forces would be on the second one. This problem could damage the rigidity of the 

blade because there is not a good force repartition. That is the reason why aerodynamicists 

twist the blade in order to reduce the thrust at the end of the blade. Another way to reduce 

these too higher forces is to apply flapping angle; indeed, even if it is small (3-6 degrees), the 

flapping angle represents the balance between the aerodynamic and centrifugal forces. 

 

It is assumed that α is the real angle of attack because it is the difference between φ  (angle 

between the velocity vector and the rotor plane) and the basic angle of attack θ  (8 degrees in 

this case). α (r) decreases when the radius r increases. The angle of attack is very high at the 

beginning of the blade: 18.93 degrees (ref: figure b9). 
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Figure b9: angle of attack on the blade 
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The data tables providing all the numerical results with the number of iterations made after 

calculations convergence are available in the appendices. To conclude this chapter, T and Q 

are given: the total thrust induced by the four blades of the helicopter is calculated: 5734.45 

N. In this case, the total Torque is about 1445.45 N.m. 

The next step is to use these values of T and Q as input of Fluent Software. 

 

 

 

4. Data implementation in FLUENT 

 

The strategy adopted here is to input the data’s provided by the previous programme in 

Fluent. This work represents BEM and CFD coupled calculations.  

 

4.1. Implementation 

 

As in the above method using the momentum theory, the input for the calculations was the 

blade forces per unit blade length in axial and tangential direction, Fn and Ft, respectively. 

The Pressures Pn and Pt in axial and tangential direction, respectively, are applied to the 

actuator disc were derived from the blade forces as follows: 

 

2.
..
R
NF

A
NF

P bnbn
n π

==   (eq b.26) 

2.
..
R
NF

A
NF

P btbt
t π

==   (eq b.27) 

 

Where     A is the solid disk area, 

     Nb is the number of blades, 

      r is the radius. 

 

The Pressure boundary conditions are applied with the Dynamic Pressure expressed 2.
2
1 Vρ  

with User Define Function programmed in C (That does not include the term of static 
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pressure); the vector directions are input for each element on the disc because of UDF 

imputation. 

 

 

 

4.2. Geometry and Meshes 

 

The disc (with 0.05 R thickness) is put in cylindrical domain; the boundaries in the 

streamwise and spanwise directions are far enough not to perturbate the flow.  

 

 

In order to limit the interactions with the domain sides, the 

area is quite big. That implies that node spaces are larger 

than the previous CFD case. The boundary conditions are 

exactly identical because that’s shown in the first part that it 

is the best option. Velocity inlets are applied on the disc 

area and wall condition is functional on the rotor disc side. 

Symmetry on the study domain sides is the best alternative 

to reduce boundary effects creating interactions with the 

flow induced by the helicopter rotor. 

 

 

T

The number of mesh nodes is reasonable (200 000 nodes 

approximately) with non-uniform repartition. The 

tetrahedral cells are smaller into the first cylinder (Radius: 

1.5 R) and grow into the second cylinder (twice bigger). 

Finally, the exterior volume gets the bigger spaces between 

two nodes. 
 Figure b10: geometry 
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User Define Function is used with the purpose of imposing the pressure repartitions and its 

direction vectors on FLUENT. This C program adapted to FLUENT implementation is 

available in the “appendix 5“. 

With the aim of obtaining accuracy data implementation on the rotor, the number of cells on 

the disc is multiplied with FLUENT until being equal to 1536 quadrilateral faces. 
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Figure b11: Grid visualisation 
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4.3. Numerical Procedure 

 

In this case, a turbulent flow is simulated through a real disc. A two-equations RANS model 

is used, the ε−k  model. All the ε−k  models have similar forms, with transport equations 

for k and ε . The major differences are the method of calculating turbulent viscosity, the 

turbulent Prandtl numbers governing the turbulent diffusion of k and ε , the generation and 

destruction terms in the ε  equation. The ε−k  RNG model is applied because it is derived 

from the instantaneous Navier-Stokes equations, using a mathematical technique called  

"renormalization group" (RNG) methods.  The analytical derivation results in a model with 

constants different from those in the standard ε−k  model, and additional terms and functions 

in the transport equations for k and ε . The main interest is that the RNG model in FLUENT 

provides an option to account for the effects of swirl or rotation by modifying the turbulent 

viscosity appropriately. 

 

Obviously, the calculation is a steady case. The implicit scheme (Segregated) is privileged to 

explicit scheme providing difficult convergences. The algorithm, which solves the continuity 

and momentum equations, is Powerlaw.  The Pressure-Velocity coupling solved to get the 

convergence by the SIMPLE C algorithm. The Standard under relaxation factors are used 

(Pressure factor: 0.3, Momentum factor: 0.7, Turbuence kinetic energy and turbulent 

dissipation rate: 0.8). 

 

 

 

4.4 Results and discussion 

 

• Validation with the total pressure and thrust 

 

It’s important to check the thrust provided by FLUENT in order to validate the 

implementation by the using of dynamic pressure distribution way described by the previous 

relations;  As the commercial CFD code is not able to calculate this Force alone, velocity 

magnitude profile is  defined and sixth order interpolated in order to calculate the Thrust and 

the mass flow rate induced by the actuator.  
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It’s assumed that the Thrust is given by the following formula: 

),(..),(. θθρ rVdSrVT
rr

∫∫=   (eq b.28) 

 

A first apprximation is to simplify the equation multiplying the mass flow rate with average 

velocity V
r

: 

VmT
r

& .=  

 

So, the mass flow rate definition becomes: 

dSrVm .),(.∫∫= θρ
r

&  

θθρ ddrrrVm ...),(.∫∫=
r

&  

 

It’s assumed that 0),(
=

∂
∂

θ
θrV

r

; 

drrrVm
Rr

Rr

.).(.2
1

0

∫
=

=

=
r

& π  

On the other hand,   ∫−
=

1

0
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R
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drrV
RR

V
rr

 

 

 

With R0 and R1 defined in the figure b12: 

 

 
figure b12: disc presentation 
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With the velocity curve integration, the results are obtained: 

  
1.1439.271 −= skgm&  

1.05452.21 −= smV
r

 

 

In these conditions, the thrust is found to be equal to: 

 

T = 5708.805 N 

 

To extend the comparison, an estimation of the errors is made It’s admitted that TFluent is the 

Thrust provided by Fluent, and Tprog is the Thrust given by the FORTRAN programme which 

inputs into the commercial CFD code: 

 

prog

Fluentprog

T

TT −
=ξ  

 

 %472.4=ξ  is the estimated error during the implementation of the data into 

the CFD code using this methodology. 

 

 

The thrust provided is only an approximation of the real thrust for the reason that 4.472 % 

error is declared. To reduce ξ , finer grid should be used, but it would increase the calculation 

time too much.  

 

 

To conclude, a supercomputer would have authorized the mesh improving, necessary if better 

implementation is desired. Furthermore, a CFD code adaptive to helicopter aerodynamics 

should be tried to check if more exactness is possible with this kind of method.  
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Figure b13: 3-Dimensional Contour Velocity 

Magnitude at different z coordinates 
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• Streamlines functions 

 

 On figure b14, representing the streamline functions, the expanding core of the vortex 

is very visible, especially above the 2 diameters distance below the disc. This phenomena 

is perceptible on figure b14, showing the high velocitiy expansion below the rotor. The 

new interest is to discern the rotation induced by the virtual blades. The flow seems to have 

a radial velocity (because the vortex radius increases along z-axis) whereas the initial 

conditions impose only the Axial and Tangential velocities. 

 

 

 

 

Figure b14: different views of Streamlines Functions 
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The software is able to give an idea about vorticity measuring the rotation of a fluid element 

as it moves in the flow field defined by the following relation: 

V
r

×∇=ζ  

The high vorticity zones are situated below the disc where the radius is defined by 

{r∈[0;0.5] ∪ [1.75;2.5]}. The streamline function and vorticity visualisations suggest that the 

vortex generation is higher if r > 3R/4 (ref appendix). 

 

 

• Dynamic Pressure on the disc 

 

 

 
Figure b15: Dynamic Pressure distribution on the disc with the cells visualisation 

 

 

 

The first impression is that the pressure values are correct; it is satisfactory to validate using 

the “User Defined Function”. Despite the fact that the C programme applies no velocity on 
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the Hub (r < 0.3m), the Dynamic Pressure values are not equal to zero. That includes that the 

flow induced by the rotor which also induces velocities in the domain (0 < r < 0.3). 

 This issue is not too important if the Pressure values in the Hub (approximately 1.33 10-2) are 

considered. 

 

• Velocity profiles 

 

 
Figure b16: Velocity Magnitude below the rotor 

 
Figure b17: Velocity Magnitude above the rotor 
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On figure b16, the velocity profiles on lines of control are shown at diverse z coordinates 

above and below the whole disc. It is fundamental to note the discontinuity on the line z=0- 

which shows the limitations of this grid. In fact, small vortices on the disc sides can appear in 

the real case but its shapes are generally different. In the domain defined by {r∈[0.3;2]},  the 

velocity repartitions are validated by the software. Using an UDF is the best way to force the 

non-uniform loading. 

The profiles are increasingly flattened when the lines of control are far away.  This reveals the 

vortex core is expanding. The domain size limits seems to be excellent because nothing 

important happens after 3.5 meters radius even though the domain is a 8 meter radius cylinder 

to limit interactions with the boudaries. 

 

Figure b17 shows the flow drawn in by the actuator disc. The velocities increase 

progressively, especially in the sector r = R. Even if the flow induced continually gains speed 

close to the  whole disc, a low velocity zone is identified at z=R/8 (z=0.25m); the simplest 

explanation is the implementation on the disc of the “drawn in” velocity between r=0.3 m and 

r=2m; checking mass flow rate theory shows that this induces low velocities in the radius 

{r∈[0;0.3]} simulating the hub of the helicopter rotor system.  

 

 

• Velocity on the z-axis 
 

 

Figure b18: Velocity along Z-axis 
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Figure b18 shows the velocity magnitude along the Z-axis. The velocity on the “R=0” line 

increases below the rotor (especially after the coordinates z = R/2) and stops its progression at 

13.R after the whole disc. Numerically, it is not similar to the curves provided by the one-

dimensional Momentum theory, but it is assumed that both curves have the same profile.  

For the two lines taken at 0.5R and R, the maximum velocity is on the rotor (z = 0 ± 0.1m ). It 

is  interesting to note that the velocity increases progressively after the rotor. 
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The BEM is a powerful tool for aerodynamic researchers on helicopter rotors. The idea 

consists of representing the airloads on two-dimensional sections of the blades and integrating 

their effects in order to find the performance of the rotor as a whole. Whereas simple 

momentum theory, the blade element approach allows the imputations of blade tip speed, 

blade loading… 

   

 

The flow induced by the programme calculation by the way of using CFD code has been 

reviewed. However, it should be inlightling to compare these results with experimental works 

or other CFD approaches. But with not enough time, this paper will end without real 

comparison with other data , which is a huge limitation to this work. 
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Conclusion 
 
 
 
 
Firstly, a comparison between the data provided by a mathematical study realised by J.T. 

Conway and a CFD modeling has been made. The methodology and knowledge are employed 

for the second part. 

 

Secondly, the ideas of combining loading distributions solved with a FORTRAN programme 

implemented in the commercial CFD code is reviewed. The principles of imputing the blades 

characteristics in order to obtain lift and drag forces on each blade have been developed. 

Because of the importance of Reynolds number and Mach number in the force distribution, 

this method shows its limitations.  

 

It will be possible for other people in the Aerospace and Mechanical Engineering department 

in UMIST to follow these model studies, in order to ameliorate and compare this results with 

experimental data. 

 

 

The goal of the aerodynamic modeling work is to be able to predict the entire flow field 

around the helicopter rotor and its airframe whatever the flight conditions. Even if this aim 

has not been achieved, this work is a step forward to that goal. 
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Appendix 1 
C program to apply three velocity profiles 

 
 
UDF for specifying steady-state velocity profile boundary condition  
 
******************************* 
#include "udf.h" 
******************************* 
  
DEFINE_PROFILE(tangentialvelocity, thread ,  position)  
{ real z[ND_ND];               
  real r; 
  real U; 
  real x;  
  real y; 
  face_t f; 
  begin_f_loop(f, thread) 
      { 
      F_CENTROID(z,f,thread); 
   x=z[0];   y=z[1];    U=20;  
if (sqrt(x*x + y*y) < 1) 
F_PROFILE(f, thread, position) = (-1.5006*sqrt(x*x + y*y)*sqrt(x*x + 
y*y)+1.4972*sqrt(x*x + y*y)+0.0018)*U; 
      } 
  end_f_loop(f, thread) 
} 
 
 
 
DEFINE_PROFILE (radialvelocity, thread ,  position)  
 
{ 
  real z[ND_ND];               
  real r; 
  real U; 
  real x;  
  real y; 
  face_t f; 
  begin_f_loop(f, thread) 
     { 
      F_CENTROID(z,f,thread); 
   x=z[0];   y=z[1];    U=20; 
if (sqrt(x*x + y*y) < 0.9)  
F_PROFILE(f, thread, position) = ( 6.4961*sqrt(x*x + y*y)*sqrt(x*x + y*y)*sqrt(x*x + 
y*y)*sqrt(x*x + y*y)*sqrt(x*x + y*y)-12.301*sqrt(x*x + y*y)*sqrt(x*x + y*y)*sqrt(x*x + 
y*y)*sqrt(x*x + y*y)+7.3631*sqrt(x*x + y*y)*sqrt(x*x + y*y)*sqrt(x*x + y*y)-
2.2472*sqrt(x*x + y*y)*sqrt(x*x + y*y)+0.4579*sqrt(x*x + y*y)-0.0008)*U;   
    } 
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  end_f_loop(f, thread) 
} 
 
 
DEFINE_PROFILE(axialvelocity, thread ,  position)  
 
{ 
  real z[ND_ND];               
  real r; 
 real U; 
  real x;  
  real y; 
  face_t f; 
  begin_f_loop(f, thread) 
     { 
      F_CENTROID(z,f,thread); 
   x=z[0];   y=z[1];    U=20;  
if (sqrt(x*x + y*y) < 0.9)  
F_PROFILE(f, thread, position) = (-1.9033*sqrt(x*x + y*y)*sqrt(x*x + y*y)*sqrt(x*x + 
y*y)*sqrt(x*x + y*y)+1.8453*sqrt(x*x + y*y)*sqrt(x*x + y*y)*sqrt(x*x + y*y)-
0.3065*sqrt(x*x + y*y)*sqrt(x*x + y*y)+0.2897*sqrt(x*x + y*y)+0.0507)*U;  
    } 
  end_f_loop(f, thread) 
}  
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Appendix 2 
C program to specify “two velocity profiles”  

And “jump pressure profile” 
 

 
UDF for specifying steady-state velocity and pressure profile boundary condition  
 
******************************* 
#include "udf.h" 
******************************* 
  
DEFINE_PROFILE(tangentialvelocity, thread ,  position)  
{ real z[ND_ND];               
  real r;  real U;  real x;  real y; 
  face_t f; 
  begin_f_loop(f, thread) 
      { 
      F_CENTROID(z,f,thread); 
   x=z[0];   y=z[1];    U=20;  
if (sqrt(x*x + y*y) < 1) 
F_PROFILE(f, thread, position) = (-1.5006*sqrt(x*x + y*y)*sqrt(x*x + 
y*y)+1.4972*sqrt(x*x + y*y)+0.0018)*U; 
      } 
  end_f_loop(f, thread) 
} 
 
 
DEFINE_PROFILE (radialvelocity, thread ,  position)  
{ 
  real z[ND_ND];               
  real r;  real U;  real x;   real y; 
  face_t f; 
  begin_f_loop(f, thread) 
     { 
      F_CENTROID(z,f,thread); 
   x=z[0];   y=z[1];    U=20; 
if (sqrt(x*x + y*y) < 0.9)  
F_PROFILE(f, thread, position) = ( 6.4961*sqrt(x*x + y*y)*sqrt(x*x + y*y)*sqrt(x*x + 
y*y)*sqrt(x*x + y*y)*sqrt(x*x + y*y)-12.301*sqrt(x*x + y*y)*sqrt(x*x + y*y)*sqrt(x*x + 
y*y)*sqrt(x*x + y*y)+7.3631*sqrt(x*x + y*y)*sqrt(x*x + y*y)*sqrt(x*x + y*y)-
2.2472*sqrt(x*x + y*y)*sqrt(x*x + y*y)+0.4579*sqrt(x*x + y*y)-0.0008)*U;   
    } 
  end_f_loop(f, thread) 
} 
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DEFINE_PROFILE(Pressionaxiale, thread ,  position)  
{ 
  real z[ND_ND];               
  real r; real U;  real x;   real y; 
  face_t f; 
 
  begin_f_loop(f, thread) 
 
     { 
      F_CENTROID(z,f,thread); 
   x=z[0]; 
   y=z[1];  
     
if (sqrt(x*x + y*y) < 1)  
F_PROFILE(f, thread, position) = ( 8521*sqrt(x*x + y*y)*sqrt(x*x + y*y)*sqrt(x*x + 
y*y)*sqrt(x*x + y*y)*sqrt(x*x + y*y)*sqrt(x*x + y*y)-21947*sqrt(x*x + y*y)*sqrt(x*x + 
y*y)*sqrt(x*x + y*y)*sqrt(x*x + y*y)*sqrt(x*x + y*y)+20741*sqrt(x*x + y*y)*sqrt(x*x + 
y*y)*sqrt(x*x + y*y)*sqrt(x*x + y*y)-9669.3*sqrt(x*x + y*y)*sqrt(x*x + y*y)*sqrt(x*x + 
y*y)+2578.2*sqrt(x*x + y*y)*sqrt(x*x + y*y)-192.33*sqrt(x*x + y*y)-41.65);   
    } 
  end_f_loop(f, thread) 
}  
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Appendix 3 
Pictures of dynamic and total pressures, turbulence intensity and 

turbulent kinetic for the simple rotor 
 

 
 

 
 

Figure c1: Contour of Total  
Pressure on a plane 

 
 

 
 

Figure c3: Contour of Dynamic 
 Pressure on a plane 

 

 
 
 
 

 
 
 

Figure c2: Contour of turbulence  
intensity on a plane 

 
 

 
 

Figure c4: pathlines coloured by 
turbulent kinetic energy 
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Appendix 4 
Pictures of velocity magnitude, axial velocity, radial velocity and 

tangential velocity on the simple rotor 
 
 

 
figure c5: Contour of  velocity magnitude on the rotor 

 

 
 

figure c7: Contour of  axial velocity on the rotor 

 

 
 
 

figure c6: Contour of  axial velocity on the rotor 

 

 
 
 
 

figure c8: Contour of  tangential velocity on the rotor 
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Appendix 5  
FORTRAN Program 

 
 
 

List of symbols: 
 
Rho     ρ   density (kg.m-3) 
Pi     π  
Elements    Number of elements that divides the blade 
r(0)    Hub of the rotor system (m) 
Uinf   Velocity Far away (m.s-1) 
Theta     θ  angle between the plane of rotation and the Blade (rad) 
ww     Velocity angle (rad.s-1) 
chord    Chord of the NACA airfoil 
nn   Number of blades 
length   Length of the blade 
 
 
 
program calc     
    integer ii  
    integer jj    
    integer iter 
    integer indice 
    integer mm 
    real*8 elements, min 
    real*8 chord,nn,pi, rho 
    real*8 a, ap, Uinf, ww 
    real*8 alpha, alpharad, phi, phi2, theta  
    real   cl, cd, cn, ct 
    real*8 test1, test2, lenght 
    real*8 alphatab(1600) 
    real*8 cltab(1600) 
    real*8 cdtab(1600) 
    real*8 diff(1600) 
    real*8 r(0:200) 
    real*8 T(0:200), Q(0:200) 
    real*8 torque(0:200), thrust(0:200) 
    real*8 sigma(200), phit(200) 
    real*8 Ft(200), Fn(200) 
    real*8 pressT(200), pressQ(200), press(200) 
    real*8 vecteur(200) 
    real z(100) 
 rho=1.125 
 pi=acos(-1.d0) 
 torque(0)=0. 
 thrust(0)=0. 
 elements=80.      
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 r(0)=0.3 
 Uinf=35.6 
 theta=8*pi/180 
 ww=30*pi 
 chord=0.16 
 nn=4.0 
 lenght=1.7 
 
 do  jj=1,elements      
  r(jj)=(lenght/elements)+r(jj-1)      
 enddo 
 
 
 
  do  jj=1,elements      
     
                  a=0.  
    ap=0. 
    iter=0 
    test1=1. 
       test2=1. 
    cn=0. 
    ct=0. 
    cd=0. 
    cl=0. 
     
    sigma(jj)=(chord*nn)/(2*pi*r(jj)) 
 
100 do while (abs(a-test1).GT.1.e-5.and.abs(ap-test2).GT.1.e-5) 
 
         test1=a 
       test2=ap  
         
    phi=(atan(((1-a)*Uinf)/((1+ap)*ww*r(jj))))   
                alpha=(phi-theta)     
    phit(jj)=alpha*180/pi 
 
  
   open(20,file='tables1.dat',status='unknown') 
 write(20,*) alpha 
 close(unit=20) 
 
 call panel 
 
 open(21,file='tables2.dat',status='unknown') 
 read(21,*) cd, cl 
 close(unit=21) 
 
   
  iter=iter+1 
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   cn = cl*cos(phi) + cd*sin(phi) 
        ct = cl*sin(phi) - cd*cos(phi)  
   a= 1/(((4*sin(phi)*sin(phi))/(sigma(jj)*cn))+1) 
   ap= 1/(((4*sin(phi)*cos(phi))/(sigma(jj)*ct))-1) 
 
   write(04,*) jj, iter, alpha, cl, cd, a, ap  
          
  enddo 
 
 
        T(jj)=(rho*nn*Uinf*Uinf*(1-a)*(1-a)*chord*cn)/ 
     . (2*sin(phi)*sin(phi)) 
 
   Q(jj)=( (rho*nn*Uinf*(1-a)*(1+ap)*ww*r(jj)*chord*ct)  /   
     . (2*sin(phi)*cos(phi))) 
 
   Fn(jj)=(rho*Uinf*Uinf*(1-a)*(1-a)*chord*cn)/ 
     . (2*sin(phi)*sin(phi)) 
 
   Ft(jj)=( (rho*Uinf*(1-a)*(1+ap)*ww*r(jj)*chord*ct)  /   
     . (2*sin(phi)*cos(phi))) 
 
    thrust(jj)=nn*Fn(jj)*(r(jj)-r(jj-1))+thrust(jj-1) 
 
    torque(jj)=nn*Ft(jj)*(r(jj)-r(jj-1))+torque(jj-1) 
 
 pressT(jj)=nn*Fn(jj)*(r(jj)-r(jj-1))*chord/(pi*r(jj)*r(jj)) 
 pressQ(jj)=nn*Ft(jj)*(r(jj)-r(jj-1))*chord/(pi*r(jj)*r(jj)) 
 press(jj)=sqrt(pressT(jj)*pressT(jj) 
     . +pressQ(jj)*pressQ(jj)) 
 vecteur(jj)=pressQ(jj)/pressT(jj) 
 
 
   
  write(60,*) r(jj) 
  write(61,*) iter 
  write(62,*) alpha 
  write(63,*) Fn(jj) 
  write(64,*) Ft(jj)   
   
  write(11,*) vecteur(jj)   
  write(10,*) pression(jj) 
  write(09,*) r(jj) 
  
 enddo    
   write(*,*) '********************' 
   write(*,*) 'the thrust is (N)' 
         write(*,*)  thrust(elements) 
   write(*,*) 'the Torque is (N.m)  ' 
   write(*,*)  torque(elements) 
   write(*,*) '*********************' 
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 END 
 
c 
c       SUBROUTINES            
c                
 
 
      subroutine panel 
 
  
 open(20,file='tables1.dat',status='unknown') 
 read(20,*) alpha 
 close(unit=20) 
 
 write(*,*) '-------------------' 
 write(*,*) alpha 
c 
c smith-hess panel method for single 
c element lifting airfoil in 2-d 
c incompressible flow 
c 
c      real z(100) 
c 
  
      call indata 
      call setup 
 
 
c 
c  100 write(6,1000) 
c 1000 format(///,' input alpha in degrees') 
c      read(5,*)alpha 
      if (alpha.gt.1.5707) go to 200 
c 
      cosalf=cos(alpha) 
      sinalf=sin(alpha) 
      call cofish(sinalf,cosalf) 
      call gauss(1) 
      call veldis(sinalf,cosalf) 
      call fandm(sinalf,cosalf) 
c     go to 100 
  
  200 return 
      end 
c 
c********************************************** 
c 
      subroutine setup 
c 
      common /bod/ nlower,nupper,nodtot,x(100),y(100), 
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     2     costhe(100),sinthe(100) 
      common /num/ pi,pi2inv 
c 
      pi=3.1415926585 
      pi2inv=.5/pi 
c 
c  set coordinates of nodes on body surface 
c 
c      write(6,1000) 
c 1000 format(///' body shape'//4x,'x',9x,'y'/) 
      npoints=nlower 
      sign=-1.0 
      nstart=0 
      do 110 nsurf=1,2 
      do 100 n=1,npoints 
      fract=float(n-1)/float(npoints) 
      z=.5*(1.-cos(pi*fract)) 
      i=nstart+n 
      call body(z,sign,x(i),y(i)) 
c      write(6,1010)x(i),y(i) 
c 1010 format(f8.4,f10.4) 
  100 continue 
      npoints=nupper 
      sign=1.0 
      nstart=nlower 
  110 continue 
      nodtot=nupper+nlower 
      x(nodtot+1)=x(1) 
      y(nodtot+1)=y(1) 
c 
c  set slopes of panels 
c 
      do 200 i=1,nodtot 
      dx=x(i+1)-x(i) 
      dy=y(i+1)-y(i) 
      dist=sqrt(dx*dx+dy*dy) 
      sinthe(i)=dy/dist 
      costhe(i)=dx/dist 
  200 continue 
c 
      return 
      end 
c 
c****************************************** 
c 
      subroutine body(z,sign,x,y) 
c 
c  return coordinates of point on body surface 
c 
c     z = node spacing parameter 
c     x,y = cartesian coordinates 
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c     sign = +1. for upper surface, -1. for lower surface 
c 
      common /par/ naca,tau,epsmax,ptmax 
c 
      if (sign.lt.0.) z=1.-z 
      call naca45(z,thick,camber,beta) 
      x=z-sign*thick*sin(beta) 
      y=camber+sign*thick*cos(beta) 
c 
      return 
      end 
c 
c************************************* 
c 
      subroutine cofish(sinalf,cosalf) 
c 
c  set coefficients of linear system 
c 
      common /bod/ nlower,nupper,nodtot,x(100),y(100), 
     2     costhe(100),sinthe(100) 
      common /cof/ a(101,111),kutta 
      common /num/ pi,pi2inv 
c 
      kutta=nodtot+1 
c 
c  initialize coefficients 
c 
      do 90 j=1,kutta 
   90 a(kutta,j)=0.0 
c 
c  set vn=0. at midpoint of ith panel 
c 
      do 120 i=1,nodtot 
      xmid=.5*(x(i)+x(i+1)) 
      ymid=.5*(y(i)+y(i+1)) 
      a(i,kutta)=0.0 
c 
c  find contribution of jth panel 
c 
      do 110 j=1,nodtot 
      flog=0.0 
      ftan=pi 
      if (j.eq.i) go to 100 
      dxj=xmid-x(j) 
      dxjp=xmid-x(j+1) 
      dyj=ymid-y(j) 
      dyjp=ymid-y(j+1) 
      flog=.5*alog((dxjp*dxjp+dyjp*dyjp)/(dxj*dxj+dyj*dyj)) 
      ftan=atan2(dyjp*dxj-dxjp*dyj,dxjp*dxj+dyjp*dyj) 
  100 ctimtj=costhe(i)*costhe(j)+sinthe(i)*sinthe(j) 
      stimtj=sinthe(i)*costhe(j)-sinthe(j)*costhe(i) 



 74

      a(i,j)=pi2inv*(ftan*ctimtj+flog*stimtj) 
      b=pi2inv*(flog*ctimtj-ftan*stimtj) 
      a(i,kutta)=a(i,kutta)+b 
      if ((i.gt.1).and.(i.lt.nodtot)) go to 110 
c 
c  if ith panel touches trailing edge, add contribution 
c    to kutta condition 
c 
      a(kutta,j)=a(kutta,j)-b 
      a(kutta,kutta)=a(kutta,kutta)+a(i,j) 
  110 continue 
c 
c  fill in known sides 
c 
      a(i,kutta+1)=sinthe(i)*cosalf-costhe(i)*sinalf 
  120 continue 
      a(kutta,kutta+1)=-(costhe(1)+costhe(nodtot))*cosalf 
     2         -(sinthe(1)+sinthe(nodtot))*sinalf 
c 
      return 
      end 
c 
c********************************* 
c 
      subroutine veldis(sinalf,cosalf) 
c 
c  compute and print out pressure distribution 
c 
      common /bod/ nlower,nupper,nodtot,x(100),y(100), 
     2     costhe(100),sinthe(100) 
      common /cof/ a(101,111),kutta 
      common /cpd/ cp(100) 
      common /num/ pi,pi2inv 
      dimension q(150) 
c 
c      write(6,1000) 
c 1000 format(///' pressure distribution'//4x,'x',8x,'cp'/) 
c 
c  retrieve solution from a-matrix 
c 
      do 50 i=1,nodtot 
   50 q(i)=a(i,kutta+1) 
      gamma=a(kutta,kutta+1) 
c 
c  find vt and cp at midpoint of ith panel 
c 
      do 130 i=1,nodtot 
      xmid=.5*(x(i)+x(i+1)) 
      ymid=.5*(y(i)+y(i+1)) 
      vtang=cosalf*costhe(i)+sinalf*sinthe(i) 
c 
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c  add contributions of jth panel 
c 
      do 120 j=1,nodtot 
      flog=0.0 
      ftan=pi 
      if (j.eq.i) go to 100 
      dxj=xmid-x(j) 
      dxjp=xmid-x(j+1) 
      dyj=ymid-y(j) 
      dyjp=ymid-y(j+1) 
      flog=.5*alog((dxjp*dxjp+dyjp*dyjp)/(dxj*dxj+dyj*dyj)) 
      ftan=atan2(dyjp*dxj-dxjp*dyj,dxjp*dxj+dyjp*dyj) 
  100 ctimtj=costhe(i)*costhe(j)+sinthe(i)*sinthe(j) 
      stimtj=sinthe(i)*costhe(j)-sinthe(j)*costhe(i) 
      aa=pi2inv*(ftan*ctimtj+flog*stimtj) 
      b=pi2inv*(flog*ctimtj-ftan*stimtj) 
      vtang=vtang-b*q(j)+gamma*aa 
  120 continue 
      cp(i)=1.-vtang*vtang 
c      write(6,1010)xmid,cp(i) 
c 1010 format(f8.4,f10.4) 
  130 continue 
c 
      return 
      end 
c 
c****************************** 
c 
      subroutine fandm(sinalf,cosalf) 
c 
c  compute and print out cd,cl,cmle 
c 
      common /bod/ nlower,nupper,nodtot,x(100),y(100), 
     2     costhe(100),sinthe(100) 
      common /cpd/ cp(100) 
c 
      cfx=0.0 
      cfy=0.0 
      cm=0.0 
c 
      do 100 i=1,nodtot 
      xmid=.5*(x(i)+x(i+1)) 
      ymid=.5*(y(i)+y(i+1)) 
      dx=x(i+1)-x(i) 
      dy=y(i+1)-y(i) 
      cfx=cfx+cp(i)*dy 
      cfy=cfy-cp(i)*dx 
      cm=cm+cp(i)*(dx*xmid+dy*ymid) 
  100 continue 
      cd=cfx*cosalf+cfy*sinalf 
      cl=cfy*cosalf-cfx*sinalf 
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 open(21,file='tables2.dat',status='unknown') 
 write(21,*) cd, cl 
 close(unit=21) 
 
 
c      write(6,1000)cd,cl,cm 
c 1000 format(////'    cd =',f8.5,'    cl =',f8.5,'    cm =',f8.5) 
c 
      return 
      end 
c 
c************************************** 
c 
      subroutine gauss(nrhs) 
c 
c  solution of linear algebraic system by 
c  gaussian elimination with partial pivoting 
c 
c   [a] = coefficient matrix 
c   neqns = number of equations 
c   nrhs = number of right-hand sides 
c 
c   right-hand sides and solutions stored in 
c   columns neqns+1 thru neqns+nrhs of a 
c 
      common /cof/ a(101,111),neqns 
c 
      np=neqns+1 
      ntot=neqns+nrhs 
c 
c  gauss reduction 
c 
      do 150 i=2,neqns 
c 
c  search for largest entry in (i-1)th column 
c  on or below main diagonal 
c 
      im=i-1 
      imax=im 
      amax=abs(a(im,im)) 
      do 110 j=i,neqns 
      if (amax.ge.abs(a(j,im))) go to 110 
      imax=j 
      amax=abs(a(j,im)) 
  110 continue 
c 
c  switch (i-1)th and imaxth equations 
c 
      if (imax.ne.im) go to 140 
      do 130 j=im,ntot 
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      temp=a(im,j) 
      a(im,j)=a(imax,j) 
      a(imax,j)=temp 
  130 continue 
c 
c  eliminate (i-1)th unknown from 
c  ith thru neqnsth equations 
c 
  140 do 150 j=i,neqns 
      r=a(j,im)/a(im,im) 
      do 150 k=i,ntot 
  150 a(j,k)=a(j,k)-r*a(im,k) 
c 
c  back substitution 
c 
      do 220 k=np,ntot 
      a(neqns,k)=a(neqns,k)/a(neqns,neqns) 
      do 210 l=2,neqns 
      i=neqns+1-l 
      ip=i+1 
      do 200 j=ip,neqns 
  200 a(i,k)=a(i,k)-a(i,j)*a(j,k) 
  210 a(i,k)=a(i,k)/a(i,i) 
  220 continue 
c 
      return 
      end 
c 
c************************************ 
c 
      subroutine indata 
c 
c  set parameters of body shape, flow 
c  situation, and node distribution 
c 
c  user must input: 
c  nlower = number of nodes on lower surface 
c  nupper = number of nodes on upper surface 
c  plus data on body 
c 
      common /bod/ nlower,nupper,nodtot,x(100),y(100), 
     2     costhe(100),sinthe(100) 
      common /par/ naca,tau,epsmax,ptmax 
c 
      nlower=30 
 nupper=30 
       
 naca=20012 
c 
      ieps=naca/1000 
      iptmax=naca/100-10*ieps 
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      itau=naca-1000*ieps-100*iptmax 
      epsmax=ieps*0.01 
      ptmax=iptmax*0.1 
      tau=itau*0.01 
      if (ieps.lt.10) return 
      ptmax=0.2025 
      epsmax=2.6595*ptmax**3 
c 
      return 
      end 
c 
c********************************************** 
c 
      subroutine naca45(z,thick,camber,beta) 
c 
      common /par/ naca,tau,epsmax,ptmax 
c 
c  evaluate thickness and camber 
c  for naca 4- or 5-digit airfoil 
c 
      thick=0.0 
      if (z.lt.1.e-10) go to 100 
      thick=5.*tau*(.2969*sqrt(z)-z*(.126+z*(.3537 
     2     -z*(.2843-z*.1015)))) 
  100 if (epsmax.eq.0.) go to 130 
      if (naca.gt.9999) go to 140 
      if (z.gt.ptmax) go to 110 
      camber=epsmax/ptmax/ptmax*(2.*ptmax-z)*z 
      dcamdx=2.*epsmax/ptmax/ptmax*(ptmax-z) 
      go to 120 
  110 camber=epsmax/(1.-ptmax)**2*(1.+z-2.*ptmax)*(1.-z) 
      dcamdx=2.*epsmax/(1.-ptmax)**2*(ptmax-z) 
  120 beta=atan(dcamdx) 
c 
      return 
c 
  130 camber=0.0 
      beta=0.0 
c 
      return 
c 
  140 if (z.gt.ptmax) go to 150 
      w=z/ptmax 
      camber=epsmax*w*((w-3.)*w+3.-ptmax) 
      dcamdx=epsmax*3.*w*(1.-w)/ptmax 
      go to 120 
  150 camber=epsmax*(1.-z) 
      dcamdx=-epsmax 
      go to 120 
c 
      end 
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Appendix 6 
Velocity vectors for the BEM-CFD approach 

 
 

 

 
Figure c9: Velocity vectors on the disc coloured by velocity magnitude 

 

 
Figure c10: Velocity vectors on a plane coloured by velocity magnitude 
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