libEngine: C++ object-oriented platform for in-cylinder flow and combustion modeling

T. Lucchini

Internal Combustion Engine Group

Internal Combustion Engine Group Department of Energy Politecnico di Milano

http://www.engines.polimi.it

Internal Combustion Engine

Group

Acknowledgements

- Dr. Gianluca D'Errico, Ing. Daniele Ettorre, Dr. Federico Piscaglia, Dr.
 Gianluca Montenegro, Prof. Angelo Onorati Politecnico di Milano
- Prof. Hrvoje Jasak Wikki Ltd., University of Zagreb
- Dr. Zeljko Tukovic University of Zagreb.
- Dr. Federico Brusiani, Prof. Gian Marco Bianchi Università degli Studi di Bologna
- Phd Student Francesco Contino University of Louvain
- **Dr. Alessandro Montanaro** CNR Istituto Motori.
- **Dr. Lyle M. Pickett**, **Dr. Mark P. Musculus** SANDIA National Laboratories.

Topics

- The OpenFOAM® technology
- The libEngine project: an overview
 - > 1D-3D coupling
 - Diesel exhaust after-treatment modeling
 - In-cylinder flow and combustion models
- Diesel combustion modeling in libEngine
 - Mesh management
 - Spray modeling
 - Combustion

Internal Combustion Engine

- OpenFOAM: open-source, object oriented CFD code developed by OpenCFD.
- Ideal tool to perform applied and fundamental studies:
 - > Open-source
 - Object-oriented
 - Wide range of pre-implemented capabilities (discretization, mesh management, numerical and physical models)

Open-source

- Research work performed in a collaborative environment:
 - Exchange of sub-routine and applications among different research groups.
 - Possibility to implement different models (spray, combustion,...) on the same platform and easily compare them.

Object-oriented CFD (C++ language)

- Avoid global data corruption (private, public and protected data).
- The code is composed by small manageable units (Classes)
- **Class**: user defined type representing one part of the problem I have to solve (mesh, matrix, field, ..).
- **Library**: definition and implementation of related classes and functions (finite volume library, turbulence model library, mesh tools library...).
- **Application**: collection of object of different classes interacting each others and "doing various things".

Object-oriented CFD (C++ language)

Object-oriented modeling of diesel combustion: Introduce new data types (*classes*) appropriate for the problem

Internal Combustion Engine

Object-oriented CFD (C++ language)

Field-Operation And Manipulation (FOAM): representing the PDE systems in their natural language:

Scalar transport equation:

•

$$\frac{\partial \rho Y}{\partial t} + \nabla \cdot (\rho \mathbf{U} Y) - \nabla \cdot (\upsilon \nabla Y) = \rho \dot{Y}$$

Internal Combustion Engine

Pre-implemented capabilities

OpenFOAM library:

- Finite-volume discretization with polyhedral cell support
- Finite-element mesh motion + topological changes
- Lagrangian particle tracking algorithm
- Thermophysical (liquid and gases) models
- Detailed chemistry...

OpenFOAM applications/solvers:

- **Compressible flow solvers**: RANS, LES, pressure-density based, density based, steady, unsteady
- **Combustion**: premixed or non-premixed combustion models
- heatTransfer: solvers for buoyancy-driven or Bousinnesq flows
- Incompressible flows: (steady, unsteady, viscid, inviscid, RANS, LES, ...)

OpenFOAM-related CFD projects

OpenFOAM

Official version developed and maintained by OpenCFD®

OpenFOAM-dev

- All the basic features of the official OpenFOAM versions
- Advanced applications/libraries contributed by different groups:
 - Wikki Ltd. (Prof. H. Jasak)
 - Chalmers University of Technology (Prof. H. Nilsson)

Internal Combustion Engine

Group

- Politecnico di Milano
- University of Zagreb (Dr. Z. Tukovic)
- Penn-State University (Prof. E. Patterson)
- ICE (Dr. B. Gshaider)

- Based on the OpenFOAM technology
- Specific libraries, applications and utilities developed

for IC engine simulations.

Internal Combustion Engine

1D-3D coupling

- Fully integrated 1D-3D simulation of the whole engine system.
 - Intake and exhaust systems
 - Closed-valve in-cylinder flow modeling
- Coupling strategy based on the solution of the Riemann problem at the 1D-3D interface.
- OpenFOAM successfully coupled with GASDYN (2006) and GTPower (2008).

T. Lucchini, Dipartimento di Energia, Politecnico di Milano.

Internal Combustion Engine G r o u p

Diesel exhaust-after treatment modeling

- Full scale DPF modeling: optimizing the DPF geometry accounting for flow non-uniformities (Fig. 1).
- Automatic-mesh generation of DPF geometries accounting for the different components (plug-ends, filter channels and chessboard arrangement) (Fig. 2).
- Momentum equation solved for the face flux field accounting for the face channels porosity (Fig. 3).

Diesel spray combustion modeling

- Mesh management: automatic mesh motion, adaptive local mesh refinement.
- Development of new spray sub-models: atomization, droplet-wall interaction models
- Modeling liquid film formation and evolution
- Development of combustion models:
 - TITC (Tabulated ignition + Eddy Dissipation Model)
 - CTC (Characteristic Time-scale model)
 - PSR (Perfectly Stirred Reactor Model with complex chemistry and tabulation)

Internal Combustion Engine

Simulation strategies

Multiple meshes cover the engine cycle simulation:

- Each mesh is valid for a certain crank angle interval.
- Mesh motion + topology change at each time-step.
- Mesh-to-mesh interpolation by inverse, distance-weighted technique.

Polyhedral, vertex based, automatic mesh motion solver

- The Laplace equation governs mesh motion
- Solved for the grid point velocity field u

Motion equation:
$$\nabla^2(\gamma \mathbf{u}) = \mathbf{0}$$

New point $\mathbf{x}_{new} = \mathbf{x}_{old} + \mathbf{u}\Delta t$

- Laplace equation solved on a finite-element decomposition of the FV mesh (*Cell decomposition*)
- Mesh validity preserved.
- Different motion boundary conditions (fixed value, fixed gradient, symmetry, periodic, ...) available to accommodate mesh motion for the most complex geometries

Dynamic mesh management (Topological changes)

Internal Combustion Engine

Mesh motion: deforming mesh

- Grid generated with ICEM-CFD tully hexahedral.
- Mesh quality preserved during motion.
- Possibility to specify the mesh motion "a priori" for certain mesh regions, to control the mesh deformation where a high quality is needed.

Motorcycle SI engine

Bore	72 mm
Stroke	60 mm
Compr. ratio	~ 11

Combined operation of sliding interfaces and dynamic mesh layering on a canted-valve engine.

T. Lucchini, Dipartimento di Energia, Politecnico di Milano.

Internal Combustion Engine G r o u p

Intake stroke simulation in a Diesel Engine

Intake stroke simulation in a SI Engine

(b): 495 ATDC

(c): 540 ATDC

(d): 570 ATDC

(e): 602 ATDC

libEngine: mesh and spray

Adaptive local mesh refinement

- To reduce the computational time and keep the ٠ same accuracy of fine meshes.
- The mesh is refined if a user-specified • **REFINEMENT CRITERIUM** is satisfied:

(c) t = 1.5 ms(d) t = 2.0 ms

$$F_{\min} \leq F \leq F_{\max}$$

Supports hexahedral mesh topology and mesh ٠ motion. Possibility to simulate real geometries.

- Implementation of new spray sub-models:
 - Atomization
 - Modified Huh-Gosman (collaboration with Prof.
 G. Bianchi e Dr. F. Brusiani from Università degli
 Studi di Bologna).
 - Wave
 - Wave-KHRT
 - Injection
 - Droplet-wall interaction

Modified Huh-Gosman model

- Parent parcels, representing the liquid fuel core are injected into the computational mesh.
- Dormant liquid core (no evaporation, drag and heat transfer)
- The parent parcel diameter is reduced due to primary breakup:
 - Diameter reduction.
 - Secondary droplets are stripped from the liquid core.

Group

Modified Huh-Gosman model

 Reduction of primary droplet diameter and spray cone angle depend on a typical breakup time and length:

$$\frac{dD}{dt} = -C_5 \frac{L_a}{\tau_a} \quad \tan\left(\frac{\theta}{2}\right) = \frac{L_a/\tau_a}{U}$$

• New parcels are created depending on the ration between the amount of stripped mass from the primary droplet and its mass.

$$\frac{m_s}{m_d} \ge s, \ 0.01 \le s \le 0.1$$

 Diameter of secondary droplets is derived from DNS calculations of liquid jet breakup under different operating conditions (nozzle Reynolds number, ambient density).

Internal Combustion Engine

Droplet-wall interaction model

 Impinging regime depends on the Weber number:

 $We = \frac{\rho \left(\vec{\mathbf{V}}_{p} \vec{\mathbf{n}}_{w} \right) d_{0}}{We}$

- Exchange of mass, momentum and energy between the fuel spray and the liquid film.
- Consequent formation of a liquid fuel film.
- Originally proposed by Stanton and Rutland (SAE-980132).

Internal Combustion Engine

libEngine: spray-wall interaction

• Approach proposed by Bai and Gosman (SAE-960626). Developed in collaboration with Dr. Z. Tukovic and Dr. H. Jasak.

Internal Combustion Engine

Group

• Simulation of the fuel film flow on an arbitrary configuration.

۲

Thin film approximation: $\begin{array}{c} I = I \\ I = I$

Evaporating spray at constant-volume conditions

- SANDIA combustion chamber (www.ca.sandia.gov/ecn)
- Experimental data of injection profile
- Injection pressure 1500 bar
- Non-reacting conditions (100% N₂)
- *n-heptane* fuel, ambient density 14.8 kg/m³

Evaporating spray at constant-volume conditions

Non-evaporating spray at constant-volume conditions with multiple injections.

• Model verified at different ambient conditions with different injection strategies (to be published at SAE World Congress 2010).

Strategy	Q _{pilot} [mm³/stroke]	Q _{tot} [mm³/stroke]	Ambient density [kg/m³]
1500 x 2	1.04	10.94	16.3
2000 x 5	0.93	20.01	18.6
2000 full	0.93	73.19	33.6
2500 x 8	1.04	29.67	23.9

Non-evaporating spray at constant-volume conditions with multiple injections.

Internal Combustion Engine

Non-evaporating spray at constant-volume conditions with multiple injections.

Non-evaporating spray at constant-volume conditions with multiple injections.

Computed results in good agreement with experimental data:

- Liquid length for both the pilot and the main injections
- Spray shape and cone angles.

Experimental data from: Dr. A. Montanaro and Dr. L. Allocca (CNR-Istituto Motori, Naples)

Evaporating spray in an optical engine

Swirl ratio	0.5
Bore	139.7 mm
Stroke	152.4 mm
Compression Ratio	16.1 (12.1)
Intake pressure	2 bar
Fuel	PRF29

Evaporating spray in an optical engine

Operating conditions

Operation	Non-reacting
Engine speed, RPM	1200
IMEP, kPa	400
Injected fuel mass, mg	56
Injection duration, CAD	6.75
SOI, ^º ATDC	0
Intake oxygen [%]	0
Equivalent EGR [%]	100
Equivalence ratio	0
Intake Temperature [ºC]	72
Intake pressure [bar]	206

MESH MANAGEMENT

- Compression stroke:
 - Layered coarse mesh + layer addition removal
- Injection and air-fuel mixture formation:
 - ✓ Coarse mesh with adaptive local mesh refinement.

Evaporating spray in an optical engine

Fuel/air mixture formation during the injection phase with adaptive local mesh refinement.

 Initial mesh: size 4 mm in the bowl region

Internal Combustion Engine

Group

Evaporating spray in an optical engine

Comparison between experimental and computed fuel mass fraction on three different cut planes.

Group

Evaporating spray in an optical engine

Comparison between experimental and computed fuel mass fraction on three different cut planes.

Group

Fuel injection in a PFI engine

- Film deposition on the valves:
 - Finite area works in combination with mesh motion
- Fuel spray convected by the flow into the cylinder

Fuel injection in a PFI engine

- Isosurfaces of fuel mass fractions to understand how fuel/air mixture formation takes place:
- The fuel vapor mainly comes from wall film.
- Computed results in agreement with a previous work carried out on the same engine (SAE 2007-24-0041)

Objectives

- Improve the existing combustion models to provide advanced diagnostic and development tools to design and simulate Diesel engines.
- This requires to:
 - Implement the state of the art of existing combustion models on the same platform (libEngine).
 - Compare them with a series of well-documented Diesel combustion experiments.
- In this way it will be possible to develop a new generation of combustion models.

TITC (Tabulated auto-Ignition + Turbulent Combustion)

- Four chemical species (air, fuel, products, residuals)
- The fuel reaction rate accounts for auto-ignition (*α=0*) and mixing controlled combustion (*α=1*) :

$$\dot{\omega}_{F} = (1 - \alpha)\dot{\omega}_{F,HT} + \alpha\dot{\omega}_{F,mix}$$

- Tabulated ignition delays from detailed chemistry to estimate auto-ignition time
- Eddy dissipation model (Magnussen) to calculate the mixing controlled combustion phase:

$$\rho \dot{\omega}_{F,MIX} = C_{mag} \rho \frac{\varepsilon}{k} \min\left(Y_F, \frac{Y_O}{s}, \beta \frac{Y_P}{1+s}\right)$$

• Predicts both auto-ignition and flame stabilization. Fast and reliable.

CTC (Characteristic Time-scale Combustion Model)

- > 11 chemical species (fuel, O_2 , N_2 , CO, CO₂, H_2O , O, OH, NO, H, H_2)
- Auto-ignition computed by the Shell auto-ignition model (available set of constants for different fuels).
- Turbulent combustion simulated accounting for both laminar and turbulent time scales:

$$\dot{Y_{i,TC}} = -\frac{Y_i - Y_i^*}{\tau_C} \quad \text{, where} \quad \tau_C = \tau_l + f \tau_t$$

> Fast like TITC, but more accurate since it can be used to predict pollutant emissions (NO_x and soot).

nternal Combustion Engine

PSR (Perfectly Stirred Reactor Combustion Model)

- Known also as *KIVA-CHEMKIN* (Singh et al., SAE 2006-01-0055)
- Homogeneous mixture, no turbulence-chemistry interaction
- Detailed chemistry is used
 - Multi-component mixture support + reaction mechanism to be provided
 - ODE solvers
- Operator splitting technique
 - Separates the chemistry and the fluid-dynamics to estimate the species source terms (ODE integration):

$$Y_i^*(t+\Delta t) = Y_i(t) + \int_t^{t+\Delta t} \dot{\omega}_i \frac{W_i}{\rho} dt \implies \dot{Y}_i = \frac{Y_i^*(t+\Delta t) - Y_i(t)}{\Delta t}$$

Validation at constant-volume conditions

Case	1	2	3	4	5	6
Ambient density [kg/m ³]	14.0	uence o	of amb	ient ten	nperatu	<mark>ire</mark> 14.8
O_2 volume fraction [%]	21	(15)	(10)	21	21	21
Ambient temperature [K]	Jnflu	ence of	EGR	1300	900	750
Injected Fuel Mass [mg]	17.8	17.8	18.1	18.1	17.5	17.4

Internal Combustion Engine

- Chemical mechanism by Patel et al.:
 - > 29 species + 50 reactions (SAE 2004-01-0558).
 - Used also to derive the tabulated ignition delays.
- Other mechanisms were tested in the same conditions.

$$T_{amb} = 900 \text{ K}, \ O_2 = 21\%, \ \rho_{amb} = 14.8 \text{ kg/m}^3$$

Internal Combustion Engine Group

Moderate soot

Formaldehyde, PAH and soot distribution

• Moderate soot conditions (T = 1000K, $O_2 = 21\%$)

Formaldehyde, PAH and soot distribution

• Low soot conditions (T = 900K, $O_2 = 21\%$)

Validation in internal combustion engine simulations

- All the three models are currently applied and verified simulating full-load conditions.
- A comprehensive validation is performed in this weeks considering:
 - Four different engine geometries (passenger car engines, heavy duty diesel engine, two-stroke diesel engine).
 - Different injection strategies (main, pilot+main, pre+pilot+main)
 - Different EGR rates (0-30%)
- The validation will carried out in terms of:
 - > In-cylinder pressure profile and heat release rate.
 - > Pollutant emission (NO_x and soot)
- …and presented at the 4th OpenFOAM Workshop (Goteborg, 2009)

What to do?

- TITC CTC: very fast, reliable models. They can be used mainly for industrial calculations and to simulate conventional diesel combustion.
- PSR: very promising model (auto-ignition, pollutant formation, flame structure), but very slow because of detailed chemistry integration.
 Solutions:
 - Parallelization of chemistry integration
 - ➤ Combination of in-situ adaptive tabulation (ISAT) and dynamic adaptive chemistry (DAC) → TDAC.

TDAC (Tabulated dynamic adaptive chemistry)

• ISAT: In-situ adaptive tabulation of the reaction mapping for a species array. The complete ISAT is used including the mapping gradient matrix.

$$\mathbf{R}(\mathbf{Y}^{q}) = \mathbf{R}(\mathbf{Y}^{0}) + \frac{\partial \mathbf{R}}{\partial \mathbf{Y}}(\mathbf{Y}^{q} - \mathbf{Y}^{0})$$

- DAC (dynamic adaptive chemistry): a detailed chemical mechanism is reduced in each computational cell involving only the significant reactions and species.
- The corresponding ODE system is calculated only for the relevant species and accounting for the relevant reactions.

TDAC (Tabulated dynamic adaptive chemistry)

HCCI combustion simulated with nheptane «reduced» mechanism from LLNL: 159 species and 770 reactions

TDAC (Tabulated dynamic adaptive chemistry)

• Diesel-like combustion calculation (2D non-premixed flame)

	Direct integration	DAC	ISAT	ISAT+DAC
Speed-up factor	1	2.5	2.5	5

• HCCI combustion calculation

	Direct integration	DAC	ISAT	ISAT+DAC
Speed-up factor	1	3	18	26

Thanks for your attention!

T. Lucchini, Dipartimento di Energia, Politecnico di Milano.

Internal Combustion Engine G r o u p