LUND

UNIVERSITY

CFD with OpenSource Software
Assignment 3

A modified version of the reactingFoam tutorial for LES

Author Peer reviewers
Piero Iudiciani Chen Huang
Hékan Nilsson

January 2010

Contents
1 Introduction
2 Creating a new solver

3 Setting up a case
3.1 The chemkin folder
3.2 The constant folder
3.3 The system folder
3.4 The 0/ directory and boundary conditions

4 Use another Reaction Mechanism

11
12

14

1 Introduction

If one wants to simulate turbulent reacting flows in OpenFOAM, one of the pos-
sibilities is to use the the RANS solver reactingFoam. However time dependent
solutions and resolution of smaller turbulent scales are important in order to cap-
ture the flame dynamics. Therefore the main purpose is to transform reactingFoam
into a LES solver. Files from a LES solver (XiFoam) will be used and changed.
All the passages will de described in details. The new solver reactingFoamLES
will then be applied on a testcase already available for reactingFoam. reacting-
Foam solves transport equations for the species involved in the combustion. In the
tutorial the files which set the reaction mechanism will be described, and it will
be shown how to select a different one. This tutorial works on OpenFoam version
1.5.x, thus we have to source it:

source $FOAM_INST_DIR/OpenFOAM-1.5.x/etc/bashrc

2 Creating a new solver

We copy the source of the available solver reactingFoam from the $FOAM APP
folder:

cd $FOAM_USER_APPBIN
cp -r $FOAM_APP/solvers/combustion/reactingFoam reactingFoamLES
cd reactingFoamLES

Then we copy some files from the course homepage using an internet browser or
wget:

wget http://www.tfd.chalmers.se/ hani/kurser/0S_CFD_2009/ \
PieroIudiciani/tutFiles.tar.gz

tar xzf tutFiles.tar.gz

rm tutFiles.tar.gz

First we rename the source file reactingFoam.C into reactingFoamLES.C and we edit it:
mv reactingFoam.C reactingFoamLES.C

In particular we change line 35 from

#include "compressible/RASModel/RASModel.H"

to

#include "compressible/LESModel/LESModel.H"

and we add the following at line 40: (all the LES solvers, i.e. coodles, XiFoam have this
line in the source file)

#tdefine divDevRhoReff divDevRhoBeff

In createFields.H we substitute RAS with LES in lines 61-63. We also comment lines
72-74. According to a low Mach number approximation, in fact, in the following we will
neglect variations in time of the pressure in the discretization of the equations:

Info << "Creating turbulence model." << nl;
autoPtr<compressible: :RASModel> turbulence

(
compressible: :RASModel: :New
(
rho,
U,
phi,
thermo ()
)
)3

Info<< "Creating field DpDt" << endl;
volScalarField DpDt =
fvc::DDt(surfaceScalarField("phiU", phi/fvc::interpolate(rho)), p);}

becomes:

Info << "Creating turbulence model" << nl;
autoPtr<compressible::LESModel> turbulence

(
compressible: :LESModel: :New
(
rho,
U,
phi,
thermo ()
)

//Info<< "Creating field DpDt\n" << endl;
//volScalarField DpDt =
// fvc::DDt (surfaceScalarField("phiU", phi/fvc::interpolate(rho)), p);

We now need files in which the discretization of the Navier-Stokes equations is performed.
We can copy the pressure, momentum and energy equations from the solver XiFoam:

cp $FOAM_APP/solvers/combustion/XiFoam/[phU]Eqn.H .

and slightly modify them. Basically we comment out the terms containing the variation
in time of the pressure. In the pressure equation p.FEqn.H we comment out the last line
(line68):

//DpDt = fvc::DDt(surfaceScalarField("phiU", phi/fvc::interpolate(rho)), p);

Similarly in the energy equation hFgqn.H we comment out line 8 and move one term to
the right hand side:

{
solve
(
fvm: :ddt (rho, h)
+ mvConvection->fvmDiv(phi, h)
- fvm::laplacian(turbulence->alphaEff(), h)
DpDt
)3
thermo->correct();
}
becomes:
{
solve
(
fvm: :ddt (rho, h)
+ mvConvection->fvmDiv(phi, h)
// - fvm::laplacian(turbulence->alphaEff (), h)

4

// DpDt
fvm::laplacian(turbulence->alphaEff (), h)
)3

thermo->correct();

In the momentum equation we can neglect the gravitational forces and thus we delete
lines 6-7:

fvVectorMatrix UEqn
(
fvm: :ddt (rho, U)
+ fvm::div(phi, U)
+ turbulence->divDevRhoReff (U)

rhoxg
)
if (momentumPredictor)
{
solve (UEqn == -fvc::grad(p));
}
becomes:

fvVectorMatrix UEqn
(
fvm: :ddt (rho, U)
+ fvm::div(phi, U)
+ turbulence->divDevRhoReff (U)
);

if (momentumPredictor)

solve (UEqn == -fvc::grad(p));

These equation files are also found in the tutorial files:

1ls tutFiles/*Eqn.H .
Then we change the file Make/files so that:

reactingFoamLES.C

EXE = $(FOAM_USER_APPBIN) /reactingFoamLES

In the file Make/options again we change the RAS libraries with the LES ones. We
can add the following at line 5:
-I$(LIB_SRC)/turbulenceModels/LES/LESdeltas/1nInclude\
and delete line 2: -I../XiFoam\

EXE_INC = \
-I../XiFoam \
-I$(LIB_SRC)/finiteVolume/InInclude \
-I$(LIB_SRC) /turbulenceModels/RAS \
-I$(LIB_SRC)/thermophysicalModels/specie/lnInclude \

[...]
EXE_LIBS = \

-lcompressibleRASModels \
-lcombustionThermophysicalModels \

becomes:

EXE_INC = \
-I$(LIB_SRC)/finiteVolume/InInclude \
-I$(LIB_SRC) /turbulenceModels/LES \
-I$(LIB_SRC)/turbulenceModels/LES/LESdeltas/1nInclude \

EXE_LIBS = \
-lcompressibleLESModels \
-lcombustionThermophysicalModels \

We are now ready to compile:

wclean
rm -r Make/linuxGccDPx*
wmake

3 Setting up a case

Once we have the solver, we can set up a case. A tutorial file for reactingFoam is found
in the OpenFOAM wiki. Either we download from the webpage
http://openfoamwiki.net/index.php/Tut_reactingFoam_firstTutorial

or we get it by typing directly in the shell:

wget http://openfoamwiki.net/images/b/b6/ReactingFoamCase.tar.gz
Once downloaded we extract the files in the folder ReactingFoamCase:

run
mkdir ReactingFoamCase

mv ReactingFoamCase.tar.gz ReactingFoamCase
cd ReactingFoamCase

tar xzf ReactingFoamCase.tar.gz

rm ReactingFoamCase.tar.gz

3.1 The chemkin folder

We can see that we have a folder called chemkin. This folder contains the informations
for the chemical reaction mechanism.

1s chemkin/
chem.inp chem.inp.1 chem.inp_15 chem.inp.full therm.dat
chem.inp file

When solving flows with reactions, a transport equation for each of the species involved
is also solved. The files *inp* contain the information about the species and the reaction
mechanism. A reaction mechanism is a list of reactions that occur during a combustion

7

process. Each reaction is characterized by a reaction rate k; which is the "speed" at
which the reaction occurs and is characterized by the Arrhenius equation:

ki = A;T%exp (— If}) (1)
where F; is the energy of activation, A; and 3; are experimental parameters, T is the
temperature. A detailed mechanism containing all the species is composed by hundreds
of species and reactions. It is therefore not practically solvable and usually reduced mech-
anism with very few reactions are used. The simplest mechanism possible is composed
by only one global reaction. This is the case of the chem.inp file which contains a simple
one-step reaction mechanism for heptane (C7TH16):

ELEMENTS

H O CN

END

SPECIE

C7H16 02 N2 C02 H20

END

REACTIONS

C7TH16 + 1102 => 7C02 + 8H20 5.00E+8 0.0 15780.0! 1
FORD / CTH16 0.25 /
FORD / 02 1.5/

END

In this mechanism the chemical elements involved are hydrogen (H), oxygen (O), car-
bon (C) and nitrogen (N). The species that partecipate are heptane (C7TH16), oxygen
molecule (02), nitrogen molecule (N2), carbon dioxide (C02), water, (H20). In this case
there is only one reaction in which heptane is the fuel, oxygen is the oxidizer, C02 and
water are the products. Nitrogen is the inert species. The three numbers before the
question mark carry the information about the reaction rate and represent respectively
the parameters A;, (; an dE; in 1. An example of a more complex mechanism can be
found in chem.inp.full

therm.dat file

The file therm.dat instead contains a database of coefficients for several species. Such
coefficients are needed to compute thermodinamical variables such as specific heat ¢, /R,
enthalpy H°/RT, enthropy S°/R, according to the following equations:

cp/R = a1 + axT + asT? + asT? + a5 T (2)

a2 az,.o Q4,3 45,4 Q6

HY/RT = T4+ 2724 273 4 2704 2
/R o+ ST+ 3T+ T+ T+ (3)
SY/R = ayInT + %T + %TQ + %T?’ + %Tﬂ‘ +ar (4)

The therm.dat file looks like this:

THERMO ALL
200.000 1000.000 5000.000

(CH20)3 70590C 3H 60 3 G 0200.00 4000.00 1500.00
0.01913678E+03 0.08578044E-01-0.08882060E-05-0.03574819E-08 0.06605143E-12
-0.06560876E+06-0.08432507E+03-0.04662286E+02 0.06091547E+00-0.04710536E-03
0.01968843E-06-0.03563271E-10-0.05665404E+06 0.04525265E+03

(CH3)2SICH2 61991H 8C 3SI 1 G 0200.00 2500.00 1500.00
0.01547852E+03 0.01065700E+00-0.01234345E-05-0.01293352E-07 0.02528715E-11
-0.06693076E+04-0.05358884E+03 0.02027522E+02 0.04408673E+00-0.03370024E-03
0.01484466E-06-0.02830898E-10 0.03931454E+05 0.01815821E+03

AL 62987AL 1 G 0200.00 5000.00 0600.00
0.02559589E+02-0.01063224E-02 0.07202828E-06-0.02121105E-09 0.02289429E-13
0.03890214E+06 0.05234522E+02 0.02736825E+02-0.05912374E-02-0.04033938E-05
0.02322343E-07-0.01705599E-10 0.03886795E+06 0.04363880E+02

[...]

These files are written and organized according to chemkin software format. Details
can be found in' and are here resumed. The first line is chemkin syntax necessary at
the beginning of the file. The three values in the second line specify three values of
temperature and therefore two temperature ranges. The intermediate temperature is
generally always 1000K. For each species then four lines are reported. The first species is
in this case (CH20)3 and does not necessarily need to be used in the reaction mechanism.
The entries in the first line report respectively the name of the species, its elemental
composition, its electronic composition, its phase (G for gas, L for liquid, S for solid),
and three temperatures (low, high, intermediate). The fourteen entries in the following
3 lines report the 7 coefficients a;_7 in equations 2-4 for the two temperature ranges,
(higher range and lower range respectively).
The chemkin directory should be located in constant:

mv chemkin/ constant/

3.2 The constant folder

In the folder constant the following files are found:

1s constant/

chemistryProperties environmentalProperties turbulenceProperties
chemkin polyMesh

combustionProperties thermophysicalProperties

"http://www.tfd.chalmers.se/ hani/kurser/0S_CFD_2007/AndreasLundstrom/
reactingFoam.pdf
http://www.tfd.chalmers.se/ hani/kurser/0S_CFD_2008/PerCarlsson/PC_Tutorial
dieselFoam_peered_NL_HN.pdf

B W NP, PP WOWNDE WD

thermophysicalProperties file

In the constant/thermophysicalProperties file we change the path of the chemical
files:

/***********************************/

thermoType hMixtureThermo<reactingMixture>;

CHEMKINFile "/cluster/samples/reactingFoam/chemkin/chem.inp";
CHEMKINThermoFile "/cluster/samples/reactingFoam/chemkin/therm.dat";
becomes:

/% k k k k k k k k k k k Kk k k %k k k *k *k k k k *k k k *k * k *k *k * *x * *x/
thermoType hMixtureThermo<reactingMixture>;

CHEMKINFile "chemkin/chem.inp";
CHEMKINThermoFile "chemkin/therm.dat";

chemistryProperties file

The settings for the chemistryProperties file are as follows:

[/ % % % % k% k & %k k k k k ok k k k k k k k k k * k *k *k * k *k *k ¥ kx *k * * x *x //
chemistry on;

turbulentReaction off;

Cmix Cmix 00000001 1.0 ;
//chemistrySolver 0DE;

//chemistrySolver EulerImplicit;
chemistrySolver sequential;
initialChemicalTimeStep 1.0e-8;

10

The entry chemistry should be switched on in order to solve for the chemistry equa-
tions as well. The entry turbulentReaction defines if a model for the effect of the smallest
turbulent scales on the flame should be adopted. The model available is the partially
stirred reaction developed at Chalmers University. and Cmix is the constant to compute
the mixing time in such a model:

Tmiz = Cmix Heff (5)
pe

Three different solvers (ODE, EulerImplicit, sequential) are available for the chemisrty
computations.
Subgrid turbulence model

When performing Large Eddy Simulation, a model for the subgrid scales needs to be
adopted. The model is set in a LESProperties file. We can take it from a LES tutorial,
for example coodles:

cp $WM_PROJECT_DIR/tutorials/coodles/pitzDaily/constant/LESProperties constant/

The turbulence model is chosen under the entry LESmodel. In OpenFOAM several
models are available for anisochoric turbulence:

Entry Model
Smagorinsky Smagorinsky
oneEqEddy k-equation eddy-viscosity

dynOneEqEddy Dynamic k-equation eddy-viscosity
lowReOneEqEddy | Low-Re k-equation eddy-viscosity
DeardorffDiffStress | Deardorff differential stress
SpalartAllmaras Spalart-Allmaras 1-eqn mixing-length

and we choose the Smagorinsky subgrid model:

J/ % % %k %k %k % % % % %)k *)k % %k % %k *k % % k %k % %k %k k k % * k * %k % k kx x % [/

LESModel Smagorinsky;
printCoeffs off;
delta cubeRootVol;

3.3 The system folder

In the folder In the system/controlDict file we change the name of the application to
reactingLESFoam and use the following settings:

11

J/ % % %k %k %k % % % % %)k *)k %k %k % %k k % % k %k % %k %k k k % *k k * %k %k k kx x x [/

application reactingFoamLES;
startFrom latestTime;
startTime 0;

stopAt endTime;

endTime 1;

deltaT le-04;
writeControl adjustableRunTime;
writeInterval 1.0e-3;
purgelirite 0;

writeFormat binary;
writePrecision 6;
writeCompression uncompressed;
timeFormat general;
timePrecision 6;
adjustTimeStep yes;

maxCo 0.1;
runTimeModifiable yes;

// 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k >k 5k 5k %k 5k 5k 3k >k 3k 3k >k 5k 5k 3k %k 3k 5k >k 3k 5k >k %k 5k 3k %k 3k 3k %k %k 5k >k >k 3k 3k %k %k 5k %k 3k 5k 3k >k 3k 5k >k %k 5k %k %k 5k >k %k %k 5k k %k %k k k

3.4 The 0/ directory and boundary conditions

We remove the latest directory, and in the 0/ directory we create a file for the turbulent
viscosity muSgs which is needed by the Smagorinsky model. The right dimensions should
be assigned to the turbulent viscosity:

12

rm -r 0.055/
cp 0/k 0/muSgs

J/ % % %k %k %k % % %k % %)k *)k % %k % %k k % % >k %k % %k %k k k % *k k * %k %k k kx x x [/

dimensions [1-1-100001;
internalField uniform 0.0;
boundaryField
{
inlet
{
type fixedValue;
value uniform 0.0;
}
lowerInlet
{
type fixedValue;
value uniform 0.0;
}
outlet
{
type zeroGradient;
}
upperWall
{
type zeroGradient;
}

Make sure that blockMesh has been run and then run reactingFoamLES

reactingFoamLES > log &

13

4 Use another Reaction Mechanism

One might want to simulate different fuels or use a more detailed mechanism. In the tut-
Files directory for example the Westbrook and Dryer two-steps mechanism for methane
is available:

cp $FOAM_USER_APPBIN/reactingFoamLES/tutFiles/WD2steps.inp constant/chemkin/

ELEMENTS

CHON

END

SPECIE

CH4 02 CO H20 CO2 N2

END

REACTIONS

CH4 + 1.502 => CO + 2H20 2.80E+09 0.0 48400.
FORD /CH4 -0.3/
FORD /02 1.3/

C02 => CO + 0.502 5.00E+08 0.0 40000.
FORD /C02 1.0 /
CO + H20 + 0.502 => C02 + H20 3.98E+14 0.0 40000.

FORD /CO0 1.0 /

FORD /H20 0.5 /

FORD /02 0.25/
END

One can see that in this mechanism carbon monoxide (CO) is first formed as intermediate
species and then carbon dioxide. Therefore in the 0/ directory we should change the
fuel from heptane (C7H16) to methane(CH4) and additionally create files for carbon
monoxide, carbon dioxide and water (optionally since any other species is treated by the
Ydefault file).

cp 0/CTH16 0/CH4
Accordingly the constant/thermophysicalProperties file should be updated:

/***********************************/

thermoType hMixtureThermo<reactingMixture>;

//CHEMKINFile "chemkin/chem.inp";
CHEMKINFile "chemkin/WD2steps.inp";
CHEMKINThermoFile "chemkin/therm.dat";
inertSpecie N2;

14

It is now possible to run with the new mechanism.

rm 0.%/
reactingFoamLES > log2 &

15

