
Chalmers University of Technology

CFD with OpenSource software, project
assignment

Lagrangian particle tracking of spheres
and cylinders

Prepared by: Jelena Andric Reviewed by: Håkan Nilsson
 Piero Iudiciani

Gothenburg, 2009

 Contents:

 Introduction

1. About multiphase flows…………………………………………………………...4
1.1 Forces acting on particles…………………………………………………………6
1.2 Drag on non-spherical solid particles…………………………………………… 8

11111 Non-spherical particles in the Newtonian-drag regime………………………..9
11111 Non-spherical particles at intermediate Reynolds numbers…………………10

2. Implementation in OpenFOAM……………………………………………….. 11
2.1 solidParticle class…………………………………………………………………11
2.2 solidParticleCloud class………………………………………………………….16

3. Creating two new classes and the new solver ……………………………20
3.1 Classes solidCylinder and solidCylinderCloud……………………………….. 20
3.2 SolidCylinderFoam solver as an application of solidCylinderCloud class…. 22

4. Results and discussion ………………………………………………………….30
4.1 Velocity field and particle position……………………………………………... 30
4.2 Particle Reynolds number……………………………………………………….32
4.3 Drag coefficient………………………………………………………………….. 33

 References

2

Introduction

The main part of this tutorial is description of two OpenFOAM classes :solidParticle and
solidParticleCloud in high details. Those classes stand for solid spherical particles.
Moreover two new classes, solidCylinder and solidCylinderCloud, are built in order to
track cylindrical particles. The implementation of the new solver is described as well.

On the other hand, the first part of the tutorial is dedicated to theoretical background of
the problem, while the last one shows the results for spherical and cylindrical
particles,using the existing and created classes.

3

1. About multiphase flows

The equations for motion and thermal properties of single-phase flows are well
accepted (Navier-Stokes equations). The major difficulty is the modeling and
quantification of turbulence and its influence on mass, momentum and energy transfer.
Computational Fluid Dynamics has already a long history and a number of commercially
available CFD-tools for this type of flow.
On the other hand, the correct formulation of the governing equations for multiphase
flows is still a subject of debate. Interaction between different phases makes these flows
complicated and very difficult to describe theoretically.
Multiphase flows are of great importance in the industrial practice, since they can occur
even more frequently than single phase flows . They are present in various forms. For
example, there are transient flows with a transition from pure liquid to a vapor flow as a
result of external heating, separated flows and dispersed two-phase flows ,where one
phase is present in the form of particles, droplets, or bubbles in a continuous carrier
phase (i.e. gas or liquid).

Figure1:Different regimes of two-phase flows, a)transient two-phase flow,
b)separated two-phase flow, c)dispersed two-phase flow.(Source:ERCOFTAC , The
Best Practice Guidelines for Computational Fluid Dynamics of turbulent dispersed
multiphase flows, 2008.)

4

For instance, dispersed two-phase flows are encountered in numerous technical and
industrial processes and may be classified in terms of the different phases being
present:

• Gas-solid flows
• Liquid-solid flows
• Gas-droplet flows
• Liquid-droplet flows

Dispersed two-phase flows are usually separated into two flow regimes:
1. Dilute dispersed systems – the spacing between the particles is large, a direct

interaction is rare and fluid dynamic forces are governing the particle transport.
2. Dense dispersed systems- inter –particle spacing is low (smaller than about 10

particle diameters) and the transport of particles is dominated by collisions.
The dispersed flows can be characterized by the volume fraction of the dispersed phase
which represents the volume occupied by the particles in a unit volume.
A classification of dispersed two-phase flows with respect to the importance of
interaction mechanisms was provided by Elghobashi (1994). Generally, it is a distinction
between dilute and dense two-phase flows as can be seen in Figure2.

Figure2: Regimes of dispersed two-phase flows as a function of particle volume
fraction.

(Source: ERCOFTAC , The Best Practice Guidelines for Computational Fluid Dynamics
of turbulent dispersed multiphase flows, 2008.)

5

.A two-phase system may be regarded as dilute for volume fractions up to 310−>Pα (i.e.
8≈PdL .In this flow regime the influence of a particle on the fluid flow may be

neglected for 610−<Pα .This is referred to as one-way coupling. For higher volume
fractions it is necessary to account for the influence of the particles on the fluid flow –
two-way coupling .In a dense regime, inter-particle interactions such as collisions and
fluid dynamic interactions between particles, become important. This is so-called four
way coupling.

1.1Forces acting on particles

The motion of particles in fluids is described in a Lagrangian way by solving a set of
ordinary differential equations along the trajectory .The goal is to calculate the change
of particle location and the linear and angular components of the particle velocity. The
relevant forces acting on the particle need to be taken into account. Hence, if spherical
particles are considered,the differential equations for calculating the particle location
and velocity are given by Newtonian second law:

()

.

1,

,

T
dt

d
I

F
dt

ud
m

u
dt

dx

P
P

i
P

P

P
P

=

=

=

∑
ω

where 63πρ PPP dm = is mass of a particle (Pρ is particle density and Pd is particle

diameter), 21.0 PPP dmI = is a moment of inertia for a sphere, iF represents the relevant
forces acting on the particle, Pu is the linear velocity of a particle ,

Pω is the angular

velocity of a particle and T is the torque acting on a rotating particle due to the viscous
interaction with the fluid.
Analytical solutions for the different forces are available for small Reynolds numbers
(Stokes flow).An extension to higher Reynolds numbers is usually obtained by including
a coefficient C in front of the force, where C is based on empirical correlations derived
from experiments or direct numerical simulations. In most fluid-particle systems, the
drag force is dominating the particle motion. Its extension to higher particle Reynolds
number is based on the introduction of a drag coefficient DC , defined as:

()
()2

2
2

PPF
F

D
D

Auu

F
C

−
= ρ

where Fu is the linear velocity of a fluid ,
4

2πP
P

d
A = is the cross-section of a spherical

particle. Multiplying by Pm and dividing by the expression for Pm for a spherical particle,
the drag force can be expressed by:

6

() ()3.
4

3
PFPFD

PP

PF
D uuuuC

d

m
F −−=

ρ
ρ

The drag coefficient is given as a function of particle Reynolds number that is defined as
the ratio of inertial force to friction force:

()4.Re
F

PFPF
P

uud

µ
ρ −

=

where is Pρ a fluid density and Fµ is a fluid dynamic viscosity.
The dependence of the drag coefficient of a spherical particle on the Reynolds number
is shown in Figure3 and it is based on numerous experimental investigations
(Schlichting 1965). From this dependence, several regimes associated with flow
characteristics can be identified, as presented in figure Figure3:

Figure3: Drag coefficient as a function of particle Reynolds number. Comparison of
experimental data with the correlation for the different regimes. (Source: ERCOFTAC ,
The Best Practice Guidelines for Computational Fluid Dynamics of turbulent dispersed
multiphase flows, 2008)

For small Reynolds number (i.e. 5.0Re <P) the viscous effects dominate and no
separation occurs. The analytic solution for the drag is obtained Stokes (1851):

()5.
Re

24

P
DC =

This regime is often referred to as Stokes flow.

7

For a transition region (i.e. 1000Re5.0 << P), numerous correlations have been
proposed. The one frequently used is proposed by Schiller and Neumann (1933) which
fits well the data up to 1000Re =P .

() ()6.
Re

24
Re15.01

Re

24 687.0
D

P
P

P
D fC =+=

Above 1000Re ≈P the flow is fully turbulent and the drag coefficient remains almost
constant up to the critical Reynolds number. This regime is often referred to as the
Newton-regime with:

()7.44.0≈DC

At the critical Reynolds number (5105.2Re ⋅≈crit), there is a drastic decrease in the drag
coefficient due to transition from a laminar to turbulent boundary layer around the
particle.

1.2 Drag of non-spherical solid particles

Non-spherical solid bodies can be classified as either regularly shaped particles
(ellipsoids, cones, disks) or irregularly-shaped particles (non-symmetric rough
surfaces).Circular cylinders belong to the former class. For cylindrical particles it is
straightforward to define an aspect ratio cylE in the form cylcylcyl DLE = (L -length, D -
diameter). Regularly shaped non-spherical particles do not typically have analytical
solutions for the drag even in the creeping flow limit. Firstly their shape and the
corresponding drag corrections may be approximated as ellipsoids by determining an
effective aspect ratio. Additional accuracy may be obtained introducing the shape factor
defined as:

()8.
..&1Re,

,

,

,

volconstsphereD

shapeD
shape

sphereD

shapeD
shape

P

C

C
f

C

C
f

<<

≡≡

To estimate the shape factor for the regularly-shaped non-spherical particles, it is
common to consider two dimensionless area parameters. Those parameters are the
surface and the projected area ratios. Each of those can be normalized by the surface
area of a sphere that has the same volume:

()9.
4/1

,
2

*

2

*

d

A
A

d

A
A proj

proj
surf

surf ππ
≡≡

The inverse of the surface area ratio is more commonly defined as the “sphericity ratio”

8

or the “shape factor”. For a cylinder with an aspect ratio cylE , the surface area ratio and
equivalent volume diameter are given as:

() ()10.
2

3
,

18

12
,

31

312

*







=

+
=≡ cyl

cyl

cyl

cyl
surf

cyl

cyl
cyl

E
dd

E

E
A

d

L
E

The projected area ratio will depend on the orientation of the particle as well as its

shape. For example, a long cylinder will have 1* >projA if it falls broadside, but 1* <projA if it

falls vertically along its axis.

Generally it is expected that larger values of
*
projA or

*
surfA would correspond to larger

drag values, and indeed this is the case.
The following correlation of these two area ratios was suggested by Loth- for the Stokes
shape correction factor:

**

3

2

3

1
surfprojshape AAf += for 1Re <<P . ()11

The relation is based on the assumption that one-third of the drag of the sphere is given
as a form drag (related to the projected area), while two thirds are the friction drag
(related to the surface area).Both the form and friction drags are proportional to the
particle diameter. It holds for non-spherical particles with small deviations from the
sphere, so it does not hold for very high or very low aspect ratios. It gives reasonable
results for many well- defined shapes with moderate aspect ratios. If a particle has a
surface area ratio close to that of a spheroid, the following relationships stand for a
given aspect ratio:

,1
11

11
ln

142 2

2

2

3432
* <











−−

−+

−
+=

−

Efor
E

E

E

EE
Asurf

()12

() ..11sin
122

1 21

2

31

32
* ≥−

−
+= −−

−
EforE

E

E

E
Asurf

()13

1.2.1 Non-spherical particles in the Newtonian-drag regime

It is helpful to consider the drag at high Reynolds numbers before proceeding to
intermediate values. Non-spherical particles tend to have drag coefficients that are
approximately independent of Reynolds number (54 10Re10 << P), so that an
approximately constant critical drag coefficient can be defined in the Newton-drag
regime. Similar to the definition of shapef this drag coefficient can be normalized by that
of a sphere with the same volume:

9

()14.
..,,

,,

volcontcritsphereD

critshapeD
shape C

C
C =

The approximate average for a sphere is:

forC critsphereD 42.0,, = 54 10Re10 << P . ()15

The drag at high Reynolds number is normally defined using a projected area. It is

difficult to determine the
*
projA for some particles, since the trajectories will generally

include secondary motion. This means that they are not always falling in a broadside
orientation (vs. area associated with volumetric diameter). For cylinders, secondary
motion was found to be important at extreme aspect ratios. In general, cylinders and
prolate ellipsoids can be approximately represented for a wide variety of density ratios
by the following expression:

() 114.217.01 ** >−+−+≈ EforAAC surfsurfshape . ()16

1.2.2 Non-spherical particles at intermediate Reynolds numbers

There are many forms of correlations trying to predict the drag coefficient of non-
spherical particles at intermediate .ReP The most successful approaches are those
which use a combination of the Stokes drag correction and the Newton-drag correction.
These approaches assume that the dependence- from 1Re <<P to critP,Re is similar for
all particle shapes and the difference is simply a correction at the extremes, given by

shapef and shapeDC , .The dependency is obtained from dimensional analysis and can be

expressed as ()** RePD fC = by normalizing the drag coefficient and the Reynolds number
as:

,*

shape

D
D C

C
C =

()17.

Re
Re*

shape

Pshape
P f

C
=

This gives good correlation for particles for a wide range of Reynolds number whose
relative cross-section (C/S) is approximately circular, e.g. spheres and cylinders. For
moderate particle Reynolds numbers, a normalized Schiller-Neumann expression may
be similarly defined:

()[] ()18.&800ReRe15.01 *687.0* SCcircularforff PPshape ≈<+=

10

2. Implementation in OpenFOAM

This section describes how spherical particles are implemented in solidParticle and
solidParticleCloud classes.The implementation mainly includes the description of
particle geometry, different functions for particle tracking and interpolates for the
continuous phase. Then the classes solidCylinder and solidCylinderCloud are described
as addition, to OpenFOAM, based on the theory described in section1.

2.1Class solidParticle

The source code is given by files solidParticle.H and solidParticle.C located in
$WM_PROJECT_DIR/src/lagrangian/solidParticle.
This is a simple solid spherical particle class with one-way coupling with the continuous
phase. Main parts of the code are commented bellow.
Complex inheritance as one of the main C++ and OpenFOAM characteristics can be
observed while analyzing the class files.

solidParticle.H

 #ifndef solidParticle_H
 #define solidParticle_H

 #include "particle.H"
 #include "IOstream.H"
 #include "autoPtr.H"
 #include "interpolationCellPoint.H"
 #include "contiguous.H"

 // *//

 namespace Foam
 {

 class solidParticleCloud;

 /*--*\
 Class solidParticle Declaration
 --/

 class solidParticle

//It is inherited from class Particle. Inheritance is one of the key
//features of C++ classes. Class (called a subclass or derived
//type) can inherit the characteristics of another class(es) (super
//class or base type) plus include its own.

//In order to derive a class from another, a colon (:) in the
//declaration of the derived class is used.

:
 public particle<solidParticle>
 {

11

http://stuff.mit.edu/afs/athena/software/openfoam_v1.4.1/OpenFOAM/OpenFOAM-1.4.1/doc/Doxygen/html/particle_8H.html
http://stuff.mit.edu/afs/athena/software/openfoam_v1.4.1/OpenFOAM/OpenFOAM-1.4.1/doc/Doxygen/html/contiguous_8H.html
http://stuff.mit.edu/afs/athena/software/openfoam_v1.4.1/OpenFOAM/OpenFOAM-1.4.1/doc/Doxygen/html/interpolationCellPoint_8H.html
http://stuff.mit.edu/afs/athena/software/openfoam_v1.4.1/OpenFOAM/OpenFOAM-1.4.1/doc/Doxygen/html/autoPtr_8H.html
http://stuff.mit.edu/afs/athena/software/openfoam_v1.4.1/OpenFOAM/OpenFOAM-1.4.1/doc/Doxygen/html/IOstream_8H.html

//Private member data are diameter of the spherical particle
//and velocity of particle

 //Diameter
 scalar d_;

 // Velocity of the particle
 vector U_;

 public:

//Class Cloud<solidParticle> is defined as a friend of ofsolidParticle
//class

 friend class Cloud<solidParticle>;

 //Class trackData is defined

//This class is used to pass tracking data to the trackToFace function

 class trackData
 {

//- Private member is the reference to the cloud containing this
// particle

 solidParticleCloud& spc_;

 // Interpolators for continuous phase fields are private members
 // of the class
 // Continuous phase fields are density, velocity and viscosity
 // Continuous phase fields are defined as objects of
 // interpolationCellPoint class

 const interpolationCellPoint<scalar>& rhoInterp_;
 const interpolationCellPoint<vector>& UInterp_;
 const interpolationCellPoint<scalar>& nuInterp_;

 // Local gravitational or other body-force acceleration is another
 // private member of trackData class
 const vector& g_;

 public:

 bool switchProcessor;
 bool keepParticle;

 // Constructor for trackData class

 inline trackData
 (
 solidParticleCloud& spc,
 const interpolationCellPoint<scalar>& rhoInterp,
 const interpolationCellPoint<vector>& UInterp,
 const interpolationCellPoint<scalar>& nuInterp,
 const vector& g
);

12

http://stuff.mit.edu/afs/athena/software/openfoam_v1.4.1/OpenFOAM/OpenFOAM-1.4.1/doc/Doxygen/html/classFoam_1_1solidParticle_1_1trackData.html#d6cfd5d5aebecd9bd34be7057df7e27d
http://stuff.mit.edu/afs/athena/software/openfoam_v1.4.1/OpenFOAM/OpenFOAM-1.4.1/doc/Doxygen/html/classFoam_1_1Vector.html
http://stuff.mit.edu/afs/athena/software/openfoam_v1.4.1/OpenFOAM/OpenFOAM-1.4.1/doc/Doxygen/html/classFoam_1_1solidParticle_1_1trackData.html#be843a2a5bba54c62eb670b8186dfe30
http://stuff.mit.edu/afs/athena/software/openfoam_v1.4.1/OpenFOAM/OpenFOAM-1.4.1/doc/Doxygen/html/classFoam_1_1interpolationCellPoint.html
http://stuff.mit.edu/afs/athena/software/openfoam_v1.4.1/OpenFOAM/OpenFOAM-1.4.1/doc/Doxygen/html/classFoam_1_1solidParticle_1_1trackData.html#d7e51f0edc6a53a47859275422aef9eb
http://stuff.mit.edu/afs/athena/software/openfoam_v1.4.1/OpenFOAM/OpenFOAM-1.4.1/doc/Doxygen/html/classFoam_1_1interpolationCellPoint.html
http://stuff.mit.edu/afs/athena/software/openfoam_v1.4.1/OpenFOAM/OpenFOAM-1.4.1/doc/Doxygen/html/classFoam_1_1solidParticle_1_1trackData.html#d46ac696c89e09c92fe4122eab8f2bfa
http://stuff.mit.edu/afs/athena/software/openfoam_v1.4.1/OpenFOAM/OpenFOAM-1.4.1/doc/Doxygen/html/classFoam_1_1interpolationCellPoint.html
http://stuff.mit.edu/afs/athena/software/openfoam_v1.4.1/OpenFOAM/OpenFOAM-1.4.1/doc/Doxygen/html/classFoam_1_1solidParticle_1_1trackData.html#567e462f1f33b801101878afd59d6fc9
http://stuff.mit.edu/afs/athena/software/openfoam_v1.4.1/OpenFOAM/OpenFOAM-1.4.1/doc/Doxygen/html/classFoam_1_1solidParticleCloud.html
http://stuff.mit.edu/afs/athena/software/openfoam_v1.4.1/OpenFOAM/OpenFOAM-1.4.1/doc/Doxygen/html/classFoam_1_1solidParticle_1_1trackData.html#b7a94249dfc7a8813a60e25d18498903
http://stuff.mit.edu/afs/athena/software/openfoam_v1.4.1/OpenFOAM/OpenFOAM-1.4.1/doc/Doxygen/html/classFoam_1_1solidParticle_1_1trackData.html#fd3536e913c59b16f50289023446228a
http://stuff.mit.edu/afs/athena/software/openfoam_v1.4.1/OpenFOAM/OpenFOAM-1.4.1/doc/Doxygen/html/classFoam_1_1solidParticle_1_1trackData.html#0f1f38986101361ed4b94d29764b05a1
http://stuff.mit.edu/afs/athena/software/openfoam_v1.4.1/OpenFOAM/OpenFOAM-1.4.1/doc/Doxygen/html/classFoam_1_1Vector.html
http://stuff.mit.edu/afs/athena/software/openfoam_v1.4.1/OpenFOAM/OpenFOAM-1.4.1/doc/Doxygen/html/classFoam_1_1interpolationCellPoint.html
http://stuff.mit.edu/afs/athena/software/openfoam_v1.4.1/OpenFOAM/OpenFOAM-1.4.1/doc/Doxygen/html/classFoam_1_1interpolationCellPoint.html
http://stuff.mit.edu/afs/athena/software/openfoam_v1.4.1/OpenFOAM/OpenFOAM-1.4.1/doc/Doxygen/html/classFoam_1_1interpolationCellPoint.html
http://stuff.mit.edu/afs/athena/software/openfoam_v1.4.1/OpenFOAM/OpenFOAM-1.4.1/doc/Doxygen/html/classFoam_1_1solidParticleCloud.html
http://stuff.mit.edu/afs/athena/software/openfoam_v1.4.1/OpenFOAM/OpenFOAM-1.4.1/doc/Doxygen/html/classFoam_1_1solidParticle_1_1trackData.html
http://stuff.mit.edu/afs/athena/software/openfoam_v1.4.1/OpenFOAM/OpenFOAM-1.4.1/doc/Doxygen/html/classFoam_1_1solidParticle.html#e69ad62ab31ab15f3da3614f675757ec
http://stuff.mit.edu/afs/athena/software/openfoam_v1.4.1/OpenFOAM/OpenFOAM-1.4.1/doc/Doxygen/html/classFoam_1_1Cloud.html
http://stuff.mit.edu/afs/athena/software/openfoam_v1.4.1/OpenFOAM/OpenFOAM-1.4.1/doc/Doxygen/html/classFoam_1_1Vector.html

 // Member functions to allow access to class private members

 inline solidParticleCloud& spc();

 inline const interpolationCellPoint<scalar>& rhoInterp() const;

 inline const interpolationCellPoint<vector>& UInterp() const;

 inline const interpolationCellPoint<scalar>& nuInterp() const;

 inline const vector& g() const;
 };

 // Constructors for solidParticle class

 // Construct from components
 inline solidParticle
 (
 const Cloud<solidParticle>& c,
 const vector& position,
 const label celli,
 const scalar m,
 const vector& U
);

 // Construct from Istream
 solidParticle
 (
 const Cloud<solidParticle>& c,
 Istream& is,
 bool readFields = true
);

 // Construct and return a clone
 autoPtr<solidParticle> clone() const
 {
 return autoPtr<solidParticle>(new solidParticle(*this));
 }

 // Member Functions are defined in this part

 //Those allow access to class private members

 // Return diameter
 inline scalar d() const;

 // Return velocity
 inline const vector& U() const;

 // The nearest distance to a wall that
 // the particle can be in the n direction
 inline scalar wallImpactDistance(const vector& n) const;

13

http://stuff.mit.edu/afs/athena/software/openfoam_v1.4.1/OpenFOAM/OpenFOAM-1.4.1/doc/Doxygen/html/classFoam_1_1Vector.html
http://stuff.mit.edu/afs/athena/software/openfoam_v1.4.1/OpenFOAM/OpenFOAM-1.4.1/doc/Doxygen/html/classFoam_1_1solidParticle.html#ed4e6ba99b2be8a11005a6cb4b3a4e1c
http://stuff.mit.edu/afs/athena/software/openfoam_v1.4.1/OpenFOAM/OpenFOAM-1.4.1/doc/Doxygen/html/classFoam_1_1solidParticle.html#c65cbd91aa93e38a43c828434b8ca2fa
http://stuff.mit.edu/afs/athena/software/openfoam_v1.4.1/OpenFOAM/OpenFOAM-1.4.1/doc/Doxygen/html/classFoam_1_1Vector.html
http://stuff.mit.edu/afs/athena/software/openfoam_v1.4.1/OpenFOAM/OpenFOAM-1.4.1/doc/Doxygen/html/classFoam_1_1solidParticle.html#d321a461b66c03ad28d4fb57c1520ee0
http://stuff.mit.edu/afs/athena/software/openfoam_v1.4.1/OpenFOAM/OpenFOAM-1.4.1/doc/Doxygen/html/classFoam_1_1solidParticle.html#e69ad62ab31ab15f3da3614f675757ec
http://stuff.mit.edu/afs/athena/software/openfoam_v1.4.1/OpenFOAM/OpenFOAM-1.4.1/doc/Doxygen/html/classFoam_1_1autoPtr.html
http://stuff.mit.edu/afs/athena/software/openfoam_v1.4.1/OpenFOAM/OpenFOAM-1.4.1/doc/Doxygen/html/classFoam_1_1solidParticle.html#4b7cca8850aec1bc169cf7652745b77f
http://stuff.mit.edu/afs/athena/software/openfoam_v1.4.1/OpenFOAM/OpenFOAM-1.4.1/doc/Doxygen/html/classFoam_1_1autoPtr.html
http://stuff.mit.edu/afs/athena/software/openfoam_v1.4.1/OpenFOAM/OpenFOAM-1.4.1/doc/Doxygen/html/classFoam_1_1Istream.html
http://stuff.mit.edu/afs/athena/software/openfoam_v1.4.1/OpenFOAM/OpenFOAM-1.4.1/doc/Doxygen/html/classFoam_1_1Cloud.html
http://stuff.mit.edu/afs/athena/software/openfoam_v1.4.1/OpenFOAM/OpenFOAM-1.4.1/doc/Doxygen/html/classFoam_1_1solidParticle.html#e69ad62ab31ab15f3da3614f675757ec
http://stuff.mit.edu/afs/athena/software/openfoam_v1.4.1/OpenFOAM/OpenFOAM-1.4.1/doc/Doxygen/html/classFoam_1_1solidParticle.html#c65cbd91aa93e38a43c828434b8ca2fa
http://stuff.mit.edu/afs/athena/software/openfoam_v1.4.1/OpenFOAM/OpenFOAM-1.4.1/doc/Doxygen/html/classFoam_1_1Vector.html
http://stuff.mit.edu/afs/athena/software/openfoam_v1.4.1/OpenFOAM/OpenFOAM-1.4.1/doc/Doxygen/html/namespaceFoam.html#f03bb4105f8a059525cb103ee2018db6
http://stuff.mit.edu/afs/athena/software/openfoam_v1.4.1/OpenFOAM/OpenFOAM-1.4.1/doc/Doxygen/html/classFoam_1_1particle.html#219da522a9ad189c6be775522ca710ca
http://stuff.mit.edu/afs/athena/software/openfoam_v1.4.1/OpenFOAM/OpenFOAM-1.4.1/doc/Doxygen/html/classFoam_1_1Vector.html
http://stuff.mit.edu/afs/athena/software/openfoam_v1.4.1/OpenFOAM/OpenFOAM-1.4.1/doc/Doxygen/html/classFoam_1_1Cloud.html
http://stuff.mit.edu/afs/athena/software/openfoam_v1.4.1/OpenFOAM/OpenFOAM-1.4.1/doc/Doxygen/html/classFoam_1_1solidParticle.html#e69ad62ab31ab15f3da3614f675757ec
http://stuff.mit.edu/afs/athena/software/openfoam_v1.4.1/OpenFOAM/OpenFOAM-1.4.1/doc/Doxygen/html/classFoam_1_1solidParticle_1_1trackData.html#d6cfd5d5aebecd9bd34be7057df7e27d
http://stuff.mit.edu/afs/athena/software/openfoam_v1.4.1/OpenFOAM/OpenFOAM-1.4.1/doc/Doxygen/html/classFoam_1_1Vector.html
http://stuff.mit.edu/afs/athena/software/openfoam_v1.4.1/OpenFOAM/OpenFOAM-1.4.1/doc/Doxygen/html/classFoam_1_1solidParticle_1_1trackData.html#be843a2a5bba54c62eb670b8186dfe30
http://stuff.mit.edu/afs/athena/software/openfoam_v1.4.1/OpenFOAM/OpenFOAM-1.4.1/doc/Doxygen/html/classFoam_1_1interpolationCellPoint.html
http://stuff.mit.edu/afs/athena/software/openfoam_v1.4.1/OpenFOAM/OpenFOAM-1.4.1/doc/Doxygen/html/classFoam_1_1solidParticle_1_1trackData.html#d7e51f0edc6a53a47859275422aef9eb
http://stuff.mit.edu/afs/athena/software/openfoam_v1.4.1/OpenFOAM/OpenFOAM-1.4.1/doc/Doxygen/html/classFoam_1_1interpolationCellPoint.html
http://stuff.mit.edu/afs/athena/software/openfoam_v1.4.1/OpenFOAM/OpenFOAM-1.4.1/doc/Doxygen/html/classFoam_1_1solidParticle_1_1trackData.html#d46ac696c89e09c92fe4122eab8f2bfa
http://stuff.mit.edu/afs/athena/software/openfoam_v1.4.1/OpenFOAM/OpenFOAM-1.4.1/doc/Doxygen/html/classFoam_1_1interpolationCellPoint.html
http://stuff.mit.edu/afs/athena/software/openfoam_v1.4.1/OpenFOAM/OpenFOAM-1.4.1/doc/Doxygen/html/classFoam_1_1solidParticle_1_1trackData.html#567e462f1f33b801101878afd59d6fc9
http://stuff.mit.edu/afs/athena/software/openfoam_v1.4.1/OpenFOAM/OpenFOAM-1.4.1/doc/Doxygen/html/classFoam_1_1solidParticleCloud.html

 // Tracking is done using Boolean function move which
 //argument is an object of trackData class
 bool move(trackData&);

 // The remaining part of the code provides the functions that handle
 // the particle hitting the wall patch; this part is not listed here

 // Ostream Operator is defined as a friend function of the class

 friend Ostream& operator<<(Ostream&, const solidParticle&);
 };

 template<>
 inline bool contiguous<solidParticle>()
 {
 return true;
 }

 // template functions to read and write the data
 template<>
 void Cloud<solidParticle>::readFields();

 template<>
 void Cloud<solidParticle>::writeFields() const;

// * //
 } // End namespace Foam

 // * //
 #include "solidParticleI.H"

 // *//

 #endif

 // ** //

solidParticle.C

#include "solidParticleCloud.H"

// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * //

bool Foam::solidParticle::move(solidParticle::trackData& td)
{
 td.switchProcessor = false;
 td.keepParticle = true;

 const polyMesh& mesh = cloud().pMesh();
 const polyBoundaryMesh& pbMesh = mesh.boundaryMesh();

 scalar deltaT = mesh.time().deltaT().value();
 scalar tEnd = (1.0 - stepFraction())*deltaT;
 scalar dtMax = tEnd;

14

http://stuff.mit.edu/afs/athena/software/openfoam_v1.4.1/OpenFOAM/OpenFOAM-1.4.1/doc/Doxygen/html/solidParticleI_8H.html
http://stuff.mit.edu/afs/athena/software/openfoam_v1.4.1/OpenFOAM/OpenFOAM-1.4.1/doc/Doxygen/html/namespaceFoam.html#6c5dadafd26d08af72218c7ae1580627
http://stuff.mit.edu/afs/athena/software/openfoam_v1.4.1/OpenFOAM/OpenFOAM-1.4.1/doc/Doxygen/html/classFoam_1_1solidParticle.html#e69ad62ab31ab15f3da3614f675757ec
http://stuff.mit.edu/afs/athena/software/openfoam_v1.4.1/OpenFOAM/OpenFOAM-1.4.1/doc/Doxygen/html/classFoam_1_1Ostream.html
http://stuff.mit.edu/afs/athena/software/openfoam_v1.4.1/OpenFOAM/OpenFOAM-1.4.1/doc/Doxygen/html/classFoam_1_1solidParticle.html#166b69ccb19e0b58748201466c4d2981
http://stuff.mit.edu/afs/athena/software/openfoam_v1.4.1/OpenFOAM/OpenFOAM-1.4.1/doc/Doxygen/html/classFoam_1_1Ostream.html
http://stuff.mit.edu/afs/athena/software/openfoam_v1.4.1/OpenFOAM/OpenFOAM-1.4.1/doc/Doxygen/html/classFoam_1_1solidParticle_1_1trackData.html
http://stuff.mit.edu/afs/athena/software/openfoam_v1.4.1/OpenFOAM/OpenFOAM-1.4.1/doc/Doxygen/html/classFoam_1_1solidParticle.html#83e4220b01afae24a0baede7bf726972

 while (td.keepParticle && !td.switchProcessor && tEnd > SMALL)
 {
 if (debug)
 {
 Info<< "Time = " << mesh.time().timeName()
 << " deltaT = " << deltaT
 << " tEnd = " << tEnd
 << " stepFraction() = " << stepFraction() << endl;
 }

 // set the lagrangian time-step
 scalar dt = min(dtMax, tEnd);

// remember the cell the particle is in since this will change if the
//face is hit
 label celli = cell();

 dt *= trackToFace(position() + dt*U_, td);

 tEnd -= dt;
 stepFraction() = 1.0 - tEnd/deltaT;

 cellPointWeight cpw(mesh, position(), celli, face());

 //continuous phase density
 scalar rhoc = td.rhoInterp().interpolate(cpw);
 //continuous phase velocity
 vector Uc = td.UInterp().interpolate(cpw);
 //continuous phase viscosity
 scalar nuc = td.nuInterp().interpolate(cpw);
 //particle density
 scalar rhop = td.spc().rhop();

 //particle relative velocity
 scalar magUr = mag(Uc - U_);

 scalar ReFunc = 1.0;

 // calculating particle Reynolds number
 scalar Re = magUr*d_/nuc;

 //checking particle flow region
 if (Re > 0.01)
 {
 // Schiller and Neumann correlation for transition region
 ReFunc += 0.15*pow(Re, 0.687);
 }

 //calculating drag function(inverse of particle relaxation time)
 scalar Dc = (24.0*nuc/d_)*ReFunc*(3.0/4.0)*(rhoc/(d_*rhop));

 //calculating particle velocity
 U_ = (U_ + dt*(Dc*Uc + (1.0 - rhoc/rhop)*td.g()))/(1.0 + dt*Dc);

 if (onBoundary() && td.keepParticle)

15

 {
 if (isType<processorPolyPatch>(pbMesh[patch(face())]))
 {
 td.switchProcessor = true;
 }
 }
 }

 return td.keepParticle;
}

// function that handles the particle hitting the wall patch
// this is done through the particle restitution ratio
// the velocity field is separated into the normal and tangential component

void Foam::solidParticle::hitWallPatch
(
 const wallPolyPatch& wpp,
 solidParticle::trackData& td
)
{
 vector nw = wpp.faceAreas()[wpp.whichFace(face())];
 nw /= mag(nw);

 scalar Un = U_ & nw;
 vector Ut = U_ - Un*nw;

 if (Un > 0)
 {
 U_ -= (1.0 + td.spc().e())*Un*nw;
 }

 U_ -= td.spc().mu()*Ut;
}

// *** //

2.2 Class solidParticleCloud

The source code is given by files solidParticleCloud.H and solidParticleCloud.C
located in $WM_PROJECT_DIR /src/lagrangian/solidParticle. The main parts
of the code are listed and commented bellow.

solidParticleCloud.H

 #ifndef solidParticleCloud_H
 #define solidParticleCloud_H
 #include "Cloud.H"
 #include "solidParticle.H"
 #include "IOdictionary.H"

 // * //

16

http://stuff.mit.edu/afs/athena/software/openfoam_v1.4.1/OpenFOAM/OpenFOAM-1.4.1/doc/Doxygen/html/IOdictionary_8H.html
http://stuff.mit.edu/afs/athena/software/openfoam_v1.4.1/OpenFOAM/OpenFOAM-1.4.1/doc/Doxygen/html/solidParticle_8H.html
http://stuff.mit.edu/afs/athena/software/openfoam_v1.4.1/OpenFOAM/OpenFOAM-1.4.1/doc/Doxygen/html/Cloud_8H.html

 namespace Foam
 {

 // Class forward declarations
 class fvMesh;
 /*--*\
 Class solidParticleCloud Declaration
 --/

 class solidParticleCloud

 //It is inherited from class Cloud
 :
 public Cloud<solidParticle>
 {

// Private data are mesh (object of fvMesh class) and particle
//properties:density, restitution ratio and friction coefficient

 const fvMesh& mesh_;

 IOdictionary particleProperties_;

 scalar rhop_;
 scalar e_;
 scalar mu_;

 // Private Member Functions are copy constructor and
 // assignment operator

 solidParticleCloud(const solidParticleCloud&);

 void operator=(const solidParticleCloud&);

 public:

 // Constructors for solidParticleCloud class
 // construct the given mesh

 solidParticleCloud(const fvMesh&);

 // Member functions to access the class private members

 // Mesh
 inline const fvMesh& mesh() const;
 // Particle density
 inline scalar rhop() const;

 //Restitution ratio
 inline scalar e() const;
 //Friction coefficient
 inline scalar mu() const;

17

http://stuff.mit.edu/afs/athena/software/openfoam_v1.4.1/OpenFOAM/OpenFOAM-1.4.1/doc/Doxygen/html/classFoam_1_1solidParticleCloud.html#b55bdd78aa373ff02d9342886989ca00
http://stuff.mit.edu/afs/athena/software/openfoam_v1.4.1/OpenFOAM/OpenFOAM-1.4.1/doc/Doxygen/html/classFoam_1_1solidParticleCloud.html#1b9e076ae314994f10d02112358ed911
http://stuff.mit.edu/afs/athena/software/openfoam_v1.4.1/OpenFOAM/OpenFOAM-1.4.1/doc/Doxygen/html/classFoam_1_1solidParticleCloud.html#8a7b1b2786827724496777e70d8870af
http://stuff.mit.edu/afs/athena/software/openfoam_v1.4.1/OpenFOAM/OpenFOAM-1.4.1/doc/Doxygen/html/classFoam_1_1solidParticleCloud.html#ae775ee455030dcd83f0279cb588a93b
http://stuff.mit.edu/afs/athena/software/openfoam_v1.4.1/OpenFOAM/OpenFOAM-1.4.1/doc/Doxygen/html/classFoam_1_1fvMesh.html
http://stuff.mit.edu/afs/athena/software/openfoam_v1.4.1/OpenFOAM/OpenFOAM-1.4.1/doc/Doxygen/html/classFoam_1_1fvMesh.html
http://stuff.mit.edu/afs/athena/software/openfoam_v1.4.1/OpenFOAM/OpenFOAM-1.4.1/doc/Doxygen/html/classFoam_1_1solidParticleCloud.html
http://stuff.mit.edu/afs/athena/software/openfoam_v1.4.1/OpenFOAM/OpenFOAM-1.4.1/doc/Doxygen/html/classFoam_1_1solidParticleCloud.html
http://stuff.mit.edu/afs/athena/software/openfoam_v1.4.1/OpenFOAM/OpenFOAM-1.4.1/doc/Doxygen/html/classFoam_1_1solidParticleCloud.html
http://stuff.mit.edu/afs/athena/software/openfoam_v1.4.1/OpenFOAM/OpenFOAM-1.4.1/doc/Doxygen/html/classFoam_1_1solidParticleCloud.html
http://stuff.mit.edu/afs/athena/software/openfoam_v1.4.1/OpenFOAM/OpenFOAM-1.4.1/doc/Doxygen/html/classFoam_1_1IOdictionary.html

 // Move the particles under the influence of the given
 // gravitational acceleration
 void move(const dimensionedVector& g);

 // Write fields
 virtual void writeFields() const;

};

 // * //

 } // End namespace Foam

 // *//

 #include "solidParticleCloudI.H"

 // *//

 #endif

 //***//

18

http://stuff.mit.edu/afs/athena/software/openfoam_v1.4.1/OpenFOAM/OpenFOAM-1.4.1/doc/Doxygen/html/solidParticleCloudI_8H.html
http://stuff.mit.edu/afs/athena/software/openfoam_v1.4.1/OpenFOAM/OpenFOAM-1.4.1/doc/Doxygen/html/classFoam_1_1dimensioned.html
http://stuff.mit.edu/afs/athena/software/openfoam_v1.4.1/OpenFOAM/OpenFOAM-1.4.1/doc/Doxygen/html/classFoam_1_1solidParticleCloud.html#09cd5001e48142941ca5fdfda22aba75

3. Creating two new classes and the new solver

3.1 Classes solidCylinder and solidCylinderCloud

Two new classes called solidCylinder and solidCylinderCloud ,which stand for
cylindrical particles are built from solidParticle and solidParticleCloud class respectively.
In $WM_PROJECT_USER_DIR new directory called solidCyliner is created as a copy of
solidParicle directory located in a $WM_PROJECT_DIR/ src/lagrangian.

cp –r $FOAM_APP/lagrangian/solidParticle/ solidCylinder
cd solidCylinder

The files options and files in Make directory should be changed as follows:

Make/files:

Make/options:

The
file names must be modified:

rename solidParticle solidCylinder *

In files solidCylinder.H,solidCylinde.C,solidCylinderCloud.H,
solidCylinderCloud.C, solidCylinderI.H, solidCylinderCloudI.H,
solidCylinderIO.C all occurrences of solidParticle should be changed to
solidCylinder:

sed –i s/solidParticle/solidCylinder/g solidCylinder.H
sed –i s/solidParticle/solidCylinder/g solidCylinder.C
sed –i s/solidParticle/solidCylinder/g solidCylinderCloud.H
sed –i s/solidParticle/solidCylinder/g solidCylinderCloud.C
sed –i s/solidParticle/solidCylinder/g solidCylinderI.H

19

solidCylinder.C
solidCylinderIO.C
solidCylinderCloud.C

LIB = $(FOAM_USER_LIBBIN)/libsolidCylinder

EXE_INC = \
 -I$(LIB_SRC)/finiteVolume/lnInclude \
 -I$(LIB_SRC)/lagrangian/basic/lnInclude \
 -I$(LIB_SRC)/lagrangian/solidParticle/lnInclude

LIB_LIBS = \
 -llagrangian \
 -lfiniteVolume

sed –i s/solidParticle/solidCylinder/g solidCylinderCloudI.H
sed –i s/solidParticle/solidCylinder/g solidCylinderIO.C

The change in drag force due to the particle shape change must be taken into account.
This is carried out in solidCylinder.C file in the following way:

solidCylinder.C

#include "solidCylinderCloud.H"

// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * //
// This part of the code remains unchanged
//** //

bool Foam::solidCylinder::move(solidCylinder::trackData& td)
{
 td.switchProcessor = false;
 td.keepParticle = true;

 const polyMesh& mesh = cloud().pMesh();
 const polyBoundaryMesh& pbMesh = mesh.boundaryMesh();

 scalar deltaT = mesh.time().deltaT().value();
 scalar tEnd = (1.0 - stepFraction())*deltaT;
 scalar dtMax = tEnd;

 while (td.keepParticle && !td.switchProcessor && tEnd > SMALL)
 {
 if (debug)
 {
 Info<< "Time = " << mesh.time().timeName()
 << " deltaT = " << deltaT
 << " tEnd = " << tEnd
 << " stepFraction() = " << stepFraction() << endl;
 }

 scalar dt = min(dtMax, tEnd);

 label celli = cell();

 dt *= trackToFace(position() + dt*U_, td);

 tEnd -= dt;
 stepFraction() = 1.0 - tEnd/deltaT;

 cellPointWeight cpw(mesh, position(), celli, face());
 scalar rhoc = td.rhoInterp().interpolate(cpw);
 vector Uc = td.UInterp().interpolate(cpw);
 scalar nuc = td.nuInterp().interpolate(cpw);
 scalar rhop = td.spc().rhop();
 scalar magUr = mag(Uc - U_);
//** //
//This part of the code is added to take into account for drag change//

20

 scalar ReFunc = 1.0;
 scalar factor = 1.0;
 scalar Re = magUr*d_/nuc;
 scalar E = 3.0;
 scalar Asurfs = (2*E+1)/pow(18*E*E,1/3);
 scalar fshape = (1/3)*pow(1.59,1/2)+(2/3)*pow(Asurfs,1/2);
 scalar Cshape = 1+0.7*pow(Asurfs-1,1/2)+2.4*(Asurfs-1);

//it must be checked that fshape!=0,otherwise the solver will not //
work even though the compilation will be successful

 if (fshape!=0)
 {
 // calculating the scale factor
 scalar factor=Cshape/fshape;

 }

 if (Re > 0.01)
 {
 //taking into account for a particle shape
 scalar Re = factor*magUr*d_/nuc;
 ReFunc += 0.15*pow(Re, 0.687);
 }
 // calculating the drag function
 scalar Dc = (24.0*nuc/d_)*ReFunc*(3.0/4.0)*(rhoc/(d_*rhop));

 //calculating the particle velocity
 U_ = (U_ + dt*(Dc*Uc + (1.0 - rhoc/rhop)*td.g()))/(1.0 + dt*Dc);

//***//

// **************The remaining part of the code is unchanged***************//

The command wclean is necessary before compiling.
The compilation is done using wmake libso.

3.2 SolidCylinderFoam solver as an application of solidCylinderCloud
class

Firstly SolidCylinderFoam solver is obtained through svn:

svn checkout
http://openfoamextend.svn.sourceforge.net/svnroot/openfoam-
extend/trunk/Breeder_1.5/solvers/other/solidParticleFoam/
cd solidParticleFoam/solidParticleFoam

In order to do the compilation in OpenFOAM -1.6.x, the file
readEnviromentalproperies.H has to be copied to the solver from the
OpenFOAM-1.5.x version:

cp /chalmers/sw/unsup/OpenFOAM-1.5.x/src/finiteVolume/ \

21

http://openfoamextend.svn.sourceforge.net/svnroot/openfoam-extend/trunk/Breeder_1.5/solvers/other/solidParticleFoam/
http://openfoamextend.svn.sourceforge.net/svnroot/openfoam-extend/trunk/Breeder_1.5/solvers/other/solidParticleFoam/

/cfdTools/general/include/readEnvironmentalProperties.H .

The purpose of this file is to take into account the gravity. The gravitational vector,
defined in this file is used by the function move in solidParticleCloud class and while
constructing an object of trackData class.
The solver can now be compiled in OpenFOAM-1.6.x using wmake.
This solver solves for the particle position and velocity. Particles are considered as
spherical rigid bodies, whose properties are density, restitution ratio and friction
coefficient.
In order to apply this solver to cylinder particles the following steps should be
performed:

cp-r solidParticleFoam solidCylinderFoam
cd solidCylinderFoam
mv solidParticleFoam.C solidCylinderFoam.C
sed –i s/solidParticle/solidCylinder/g solidCylinderFoam.C

The files and options files in Make directory of the solver must be changed as well:

Make/files:

Make/options:

Finally,it is compiled using wmake.

In $WM_PROJECT_USER_DIR/solidParticleFoam there should be four
subdirectories: box,solidParticleFoam, solidCylinderFoam,

22

EXE_INC = \
 -I$(LIB_SRC)/finiteVolume/lnInclude \
 -I$(LIB_SRC)/lagrangian/basic/lnInclude \
 -I$(LIB_SRC)/lagrangian/solidParticle/lnInclude \
 -I../solidCylinder/lnInclude

EXE_LIBS = \
 -lfiniteVolume \
 -llagrangian \
 -lsolidParticle \
 -L$(FOAM_USER_LIBBIN) \
 -lsolidCylinder

solidCylinderFoam.C

EXE = $(FOAM_USER_APPBIN)/solidCylinderFoam

solidCylinder.This is where the solidCylinder directory should be located,
otherwise there will be some errors while compiling.
The Box directory is used as a test case. The particles at different initial velocities are
inserted into the box with given dimensions, in which the fluid is at rest. The goal is to
track the motion of these particles, i.e. to solve for their positions and velocities.
Box directory contains three directories: 0, constant and system.
Directory 0 includes :lagrangian nu rho U. Files nu, rho and U contain
information about the viscosity, density and velocity of the continuous phase.Subirectory
lagrangian contains another directory named defaultCloud, which includes the
following files: d positions U. These files contain the information about particle
diameters, positions and velocities respectively.
The directory constant includes the directory polyMesh and the files
environmentalProperies(in order to take into account for gravity acceleration as
previously explained) and particleProperties(density, restitution ratio and friction
coefficient).
Directory system as usual contains controlDict, fvSchemes and
fvSolution.
More details regarding the files are provided below.

23

/*---*\
=========	
\\ / F ield	OpenFOAM: The Open Source CFD Toolbox
\\ / O peration	
\\ / A nd	Version 1.5
\\/ M anipulation	Web: http://www.OpenFOAM.org

---/
FoamFile
{
 version 2.0;
 format ascii;
 class volVectorField;
 object U;
}
// * //

dimensions [0 1 -1 0 0 0 0];

internalField uniform (0 0 0);
boundaryField
{

 Walls
 {
 type fixedValue;
 value uniform(0 0 0)
 }
}

// * //

In 0/U the velocity of the continuous phase is defined. The corresponding OpenFOAM
file is shown bellow. The velocity is an object of volVectorField class. The units are
specified in m/s. The internal field is set to uniform (0 0 0) (fluid at rest) and the
boundary field is set to zero gradient.

24

http://www.openfoam.org/

/*---*\
=========	
\\ / F ield	OpenFOAM: The Open Source CFD Toolbox
\\ / O peration	
\\ / A nd	Version 1.5
\\/ M anipulation	Web: http://www.OpenFOAM.org

---/
FoamFile
{
 version 2.0;
 format ascii;
 class volScalarField;
 object rho;
}
// * //

dimensions [1 -3 0 0 0 0 0];

internalField uniform 1;

boundaryField
{

 Walls
 {
 type zeroGradient;
 }

}
// * //

In 0/rho the density of the continuous phase is defined. From the corresponding
OpenFOAM file It can be seen that the density is defined as an object of
volScalarField class. The units are kg/m3. The internal field is set to 1 (air density at
ambient temperature) while the boundary field is specified as zero gradients.

25

http://www.openfoam.org/

/*---*\
=========	
\\ / F ield	OpenFOAM: The Open Source CFD Toolbox
\\ / O peration	
\\ / A nd	Version 1.5
\\/ M anipulation	Web: http://www.OpenFOAM.org

---/
FoamFile
{
 version 2.0;
 format ascii;
 class volScalarField;
 object nu;
}
// * //

dimensions [0 2 -1 0 0 0 0];

internalField uniform 1e-6;

boundaryField
{

 Walls
 {
 type zeroGradient;
 }

}
// * //

In 0/nu the kinematic viscosity of the continuous phase is defined. The corresponding
OpenFOAM file is given bellow. It can be seen that the viscosity is defined as an object
of volScalarField class. The units are m2/s and the boundary field is specified as
zero gradient.

26

http://www.openfoam.org/

/*---*\
=========	
\\ / F ield	OpenFOAM: The Open Source CFD Toolbox
\\ / O peration	
\\ / A nd	Version 1.5
\\/ M anipulation	Web: http://www.OpenFOAM.org

---/
FoamFile
{
 version 2.0;
 format ascii;
 class vectorField;
 location "0";
 object U;
}
// * //
2
(
(1.7e-1 0 0)
(1.7 0 0)
)
// *** //

/*---*\
=========	
\\ / F ield	OpenFOAM: The Open Source CFD Toolbox
\\ / O peration	
\\ / A nd	Version 1.5
\\/ M anipulation	Web: http://www.OpenFOAM.org

---/
FoamFile
{
 version 2.0;
 format ascii;
 class vectorField;
 location "0";
 object d;
}
// * //
2
(
2.0e-3
2.0e-3
)
// *** //

In 0/lagrangian/defaultCloud/d foam file the particle (cylinder) diameters are
specified:

In 0/lagrangian/defaultCloud/U foam file the initial velocities of two particles
(cylinders) are specified:

27

http://www.openfoam.org/
http://www.openfoam.org/

/*---*\
=========	
\\ / F ield	OpenFOAM: The Open Source CFD Toolbox
\\ / O peration	
\\ / A nd	Version 1.5
\\/ M anipulation	Web: http://www.OpenFOAM.org

---/
FoamFile
{
 version 2.0;
 format ascii;
 class dictionary;
 object particleProperties;
}
// * //

rhop rhop [1-3 0 0 0 0 0] 1000;
e e [0 0 0 0 0 0 0]0.8;
mu mu [0 0 0 0 0 0 0]0.2;

// *** //

In constant/particleProperties foam file, the particle density, restitution ratio
and friction coefficient are specified.

In order to apply the new solver solidCylinderFoam ,the following steps need to be
done:
cd ../box
blockMesh
solidCylinderFoam > log&

28

http://www.openfoam.org/

4. Results and discussion

Complete postprocessing is done in MatLab.The OpenFOAM solver ,described in
previous section, provides the velocity field for each single particle that is tracked (in this
particular case sphere1, sphere2, cylinder1, cylinder2) and for every time step.
Corresponding values are manually extracted to Matlab and used to calculate the
velocity magnitude, the particle Reynolds number and the drag coefficient.

• For each time step the velocity field is given in the form: (0,,vu), where u and v

stand for the velocity components in x and y directions respectively.

• The velocity magnitude (for each particle) is calculated as: 22 vumagP += .

• The particle Reynolds number is given by:
Cshape

Pshape
P f

dmagC

ν
=Re .

• The drag coefficient is calculated according to: ()687.0Re15.01
Re

24
P

P
dC += .

Particle diameter d , kinematic viscosity of continues phase Cv and quantities shapeC and

shapef have already been specified in Chapter1.

4.1 Velocity field and Particle position

In Figure4 the velocity magnitudes for all four tracked particles are given. Considering
sphere1 and cylinder1, which have the lower initial velocity, it can be seen that their
velocity magnitudes coincide for the first 0.4 s. For sphere2 and cylinder2 that are given
a higher initial velocity, the magnitudes coincide for t=0.6. Moreover, the particles with
the higher initial velocity are reaching the rest phase faster comparing to those with the
lower one. It can be also noticed that spherical particles will be at rest before the
cylindrical ones.

29

Figure4: Velocity fields for spherical and cylindrical particles

The positions of spherical particles, concerning the y-direction and for a given time are
shown in Figure 5. It can be seen that the particles are bouncing against the lower wall,
before they reach the rest phase.

Figure5: Sphere position considering y-direction

30

4.2 Particle Reynolds numbers

The particle Reynolds numbers as functions of time are presented for both spherical
and cylindrical particles. Analyzing the graphs in Figures 5 and 6, it can be noticed that
the cylinders experience the higher Re-number than the spheres, which is physically
correct. Moreover, the sphere and cylinder with the higher initial velocity first have rather
high Reynolds numbers, but are fast approaching very low values. Regarding the
sphere and cylinder with the lower initial velocity, the decreasing trend for Re-numbers
can be noticed, except for the beginning of the simulation (first 0.2 s), where the values
remain higher comparing to the sphere-cylinder pair with the higher initial velocities.

Figure6: Reynolds number as a function of time for sphere1 and cylinder1

31

Figure7: Reynolds number as a function of time for sphere2 and cylinder2

4.3 Drag coefficient

In Figures 8-15 the dependence of the drag coefficients for spherical and cylindrical
particles on time and Reynolds numbers is shown. Generally, the results are in good
agreement with theory.
In Figure 8, the dependence of the drag coefficient for sphere1 and cylinder1 is
presented. It can be seen that the drag coefficient has lower values for the cylindrical
particle than for the spherical one, since the Reynolds number for the cylindrical particle
is higher. Besides, the drag coefficients for both spherical and cylindrical particles
increase with time, which is again related to the particle Reynolds numbers that
decrease with time, as has already been shown.

32

Figure8: Drag coefficient as a function of time for sphere1 and cylinder1

The similar conclusions can be drawn for sphere2 and cylinder2. The results are shown
in Figures 9 and 10.
Figure 9 represents the results for the complete computational time of 1s.The drag
coefficient for sphere2 cannot be clearly observed. It can be noticed that it experiences
extremely high values after 0.8 s. This corresponds to the region of very low particle
Reynolds numbers presented in Figure 7.This result is not physical. What can be seen
in Figure 8 is rather a numerical problem that occurs when the particles are almost at
rest and bouncing against the lower wall.
Figure 9 shows the results for t=0.8 s. The previously described trend for both drag
coefficients can clearly be observed.

33

Figure9: Drag coefficient as a function of time for sphere2 and cylinder2 (computational
time t=1s)

Figure10: Drag coefficient as a function of time for sphere2 and cylinder2(computational
time t=0.8s)

34

Figure11: Drag coefficient as a function of particle Reynolds number for sphere1

Figure12: Drag coefficient as a function of particle Reynolds number for cylinder1

35

Figure 13 shows the dependence of drag coefficient for sphere2 on the Reynolds
number.
The same numerical problem observed while analyzing the dependence of drag
coefficient for sphere2 on time is present again.

Figure13: Drag coefficient as a function of Reynolds number for sphere2

Figure14: Drag coefficient as a function of Reynolds number for sphere2 (computational
time t=0.8s)

36

The same numerical problem is not present in Figure14 that shows the dependence of
the drag coefficient on the Reynolds number for cylinder2.

Figure15: Drag coefficient as a function of Reynolds number for cylinder2

37

References:

1. ERCOFTAC , The Best Practice Guidelines for Computational Fluid Dynamics of
turbulent dispersed multiphase flows, 2008

2. Crowe, C.,Sommerfeld,M.,Tsuji, Y., Multiphase flows with droplets and particles,
CRC Press, 1998

3. Loth, E., Drag of non-spherical solid particles of regular and irregular shape,
Science Direct, 2007

4. Sasic, S., Van Wachem, B., Direct numerical simulation (DNS) of an individual
fiber in an arbitrary flow field – an implicit immersed boundary method,
Multiphase Science and Technology, Vol21, Issues 1-2, 2009

5. Lectures –PhD course in CFD with OpenSource software, Quarter2, 2009,
Chalmers University of Technology

6. http://foam.sourceforge.net/doc/Doxygen/html/
7. http://www.cplusplus.com/doc/tutorial

38

http://www.cplusplus.com/doc/tutorial
http://foam.sourceforge.net/doc/Doxygen/html/

	 Contents:
	Introduction
	1. About multiphase flows
	1.1Forces acting on particles
	1.2 Drag of non-spherical solid particles
	solidParticle.H
	solidParticle.C
	solidParticleCloud.H
	3.2 SolidCylinderFoam solver as an application of solidCylinderCloud class
	Firstly SolidCylinderFoam solver is obtained through svn:
	Make/options:

