Stromningsteknik - Energivetenskaper

LUND TEKNISKA HOGSKOLA

CFD WITH OPENSOURCE SOFTWARE, ASSIGNMENT 3

Tutorial icoLagrangianFoam /
solidParticle

Peer reviewed by:
JAN POTAC
HAKAN NILSSON

Author:
AURELIA VALLIER

January 11, 2010

Chapter 1

Theory

In this chapter we present the equations solved when modeling particles and incompressible
flow.

1.1 Equations in the Eulerian frame
The fluid phase is governed by the incompressible Navier Stokes equations

vV-U=0

ou
prerf(U-VU) = —Vp+ pu; VU + pg — Sp (1.1)

where U, p, ps and py are the velocity, pressure, density and viscosity of the fluid. The addi-
tional source term Sp in the momentum equation (1.1) is due to the influence of the particles
on the fluid. Take a particle P of mass mp and velocity U,. The force exerted by a particle
on a unit volume of fluid is proportional to the difference in particle momentum between the
instant it enters (¢;,,) and leaves (¢,,:) the control volume:

mP((Up)tOut - (Up)tm)' (1.2)

A momentum source contribution is generated by the particle P in each cell visited along its
path during one eulerian timestep dt. The contribution of all the particles which have been in
the cell k (of volume V},) during the eulerian time step dt is written as

1
SpQcellk = m ZP:mP((Up)twmezzk - (Up)tincellk‘,)' (1.3)

To explain how this contribution is calculated for each lagrangian time step At within one
eulerian time step dt, we give 2 exemples.

e Exemple 1: Take a particle P, with velocity Ua, at initial position A in the cell cellA such
that its position B after the time dt is still in the cell cellA. The particle doesn’t hit a face.
The velocity of this particle at the position B is updated (see next part) and called Ub.
The contribution of this particle on the cell cellA is "' (Ub — Ua).

e Exemple 2: Take a particle P, with velocity Ua, at initial position A in the cell cellA such
that its position B after the time dt should be in the cell cellB, neighboor with cellA. The
particle has to cross a face at the posistion F. AF is the fraction of trajectory completed to
reach the position F. We call stepfraction the fraction of the eulerian time-step completed
when the particle reach the position F. The eulerian time step dt has to be divided in

1.2. EQUATIONS IN THE LAGRANGIAN FRAME CHAPTER 1. THEORY

2 lagrangian time steps, one to cover the distance AF (At=stepfration) and one to cover
the distance FB (At=dt-stepfraction). The velocity of the particle at the position F is
updated (see next part) and called Uf. The contribution of the particle on the cell cellA is
72 (Uf — Ua). Then the particle moves to the position B, its velocity Ub is evaluated

and the contribution of this particle on the cell cellB is "' (Ub — Uf).

In practice the particle trajectory cross several cells and each Eulerian time step is divided in
a set of Lagrangian time steps that is specific to each particle.

1.2 Equations in the lagrangian frame

A particle P is defined by the position of its center xp, its diameter Dp, its velocity Up and its
density pp. The mass of the particle is mp = % ppmD%. In a Lagrangian frame, each particle
position vector xp is calculated from the equation

pr
== = 14
7 Up (1.4)

and the motion of particles is governed by Newton’s equation:
dUp

In dilute flow, the dominant force acting on the particle is drag Fp from the fluid phase: we
neglect particles Magnus force (assuminging that particle rotation is small compare to particle
translation) and other forces such as added mass, Basset history term, buoyancy force.

ZF =Fp + m,g. (1.6)

The particle Reynolds number is defined as

_ pD[U- Uy

Rep 1.7
Ky
The drag force can be expressed as
Fp = —m, UPT; v (1.8)

The relaxation time 7, of the particles is the time it takes for a particle to respond to changes
in the local flow velocity.

4 pp Dy
_=z 1.9
7 30,CplU - Uy 19
where the standard definition of the drag coefficient Cp is
szp if Re, < 0.1 Stokes regime
Cp = szp (1+ %Ref/‘g) if 0.1 < Re, < 1000 Transition regime (1.10)
0.44 if Re, > 1000 Newtonian regime

The drag coefficient for a solid sphere at low Reynolds number is evaluated analytically by
the Stokes’law (G.G. Stokes, Camb. Phil. Trans. 9, 1851). It has been extended for higher
Re,, with empirical non-linear correction to take account for both viscous and inertial effects.
The correlation used here is due to Schiller and Naumann (Z. Ver. Dtsh. Ing. 1933,318). For
high values of Re,, inertial effects dominate viscous effects; the drag coefficient becomes inde-
pendent of Reynolds number and a constant value is normally adopted (Geurts and Vreman,
2006).

1.3. DEFINITIONS CHAPTER 1. THEORY

Since the fluid velocity U, calculated in the Eulerian frame, is needed for the calculation of
the drag force in the Lagrangian frame, it has to be interpolated at the position of the particle
from the neighboor grid points :Ugp. Finally the velocity of the particle is calculated using
equations (1.5), (1.6) and (1.8) :

ULHAt U, _ UgHat _ ut

—mp—B— — —@P | o (1.11)

m
P At Tp

Hence the velocity of the particle is updated after the first lagrangian time step At with

U + Ubp 2F + gAt

t+At
U= = T A (1.12)
and the position of the particle is evaluated using equation (1.4):
t+At _ Lt t
Xp =x, + UpAt (1.13)

If the eulerian time step is completed in several lagragian time steps, the velocity and position
are evaluated at the n-th lagrangian time step by:

0 At t Aty
utoman _ Up T+ Uep T 4 BAL (1.14)
P - At, .
1+ N
n . n—1 . n—1 .
xpFaui At (Ui Al i At g, (1.15)

1.3 Definitions
1.3.1 1-,2-4- way coupling

The concentration of particles influences the interaction between the two phases. This is classi-
fied by Elgobashi (Particle-Laden Turbulent Flows: Direct Numerical Simulation and Closure
Models. Appl. Sci. Res., 48, 3-4, 301-304. 1991). In a dilute suspension the distance between 2

particles P; and P; is larger than 10 particle diameter: xp*,%:l:j > 10. Otherwise the suspension

is called dense. The volume fraction of particles in a control volume cellk of volume V_.; is
defined by vol fracQcellk = inw where N P, is the number of particles in cellk and Vp is
the volume of one particle.

e In the case of a dilute suspension with a volume fraction of particles lower than 10, the
particles’ effects on turbulence are negligible. This is one-way coupling: the flow affects
the particles but the particles don’t affect the flow (the additional source term in the
momentum equation is neglected).

e When the volume fraction is higher (vol frac € [107,1073]) the particles enhance turbu-
lence (if 7, /7. > 10?) or dissipation (if 7, /7, < 102) (where 7y is the Kolmogorov time scale
and 7, is the particle relaxation time). This is two-way coupling and the soucre term is
added in the momentum equation.

e For a dense suspension the particle-particle interactions must also be taken into account.
This is called four-way coupling. Collision modelling is described in the next part.

1.3.2 Spray, cloud and parcels

e A parcel is a computational particle. It can be difficult to track a very large amount of
particles. So a smaller number of computational particles are chosen to represent the

1.4. COLLISION CHAPTER 1. THEORY

actual particles. If a computational particle represents n physical particles, we only need
to track N/n computational particles instead of tracking N particles. It is assumed that
a parcel moves trough the field with the same velocity as a single physical particle. All
particles within a parcel have the same properties.

e A cloud is a collection of lagrangian particles.

e A spray is a cloud of parcels.

1.4 Collision

1.4.1 Collision between two particles

We consider two particles P; and P;. We define a unit normal vector from particle P; to particle
P j .
ij — Xp;

(1.16)

nj_>j=

‘XPJ. — XP;
and t;_-; is the unit vector in the tangential direction (i.e. orthogonal to n;_-; on the plan
where the collision occurs). The velocity of the particle P; is written as

Upi = Uﬁini_>j +U1t>iti_>j 1.17)
Two particles P, and P; will collide with a certain probability if
e their trajectories intersect within the lagrangian time step i.e. (Up, — Up;)n;_»j >0

e and their relative displacement is larger than the distance between them i.e. (Up, —
Upj)ni,>jAt > ‘XPJ- — Xp,;| — %(Dpl + Dpj)

If the particle rotation is neglected, we can assume that the tangential component U} of the
velocities does not change after the collision. The velocity of the particle P; after collision is

U/p1 = Ugi,ni,>j + thDitif>j (1.18)

The post-collision velocities U}! of the particles along the normal direction are evaluated us-
ing results for one-dimensional inelastic collision: we write the conservation of momentum
(Gmp,(UB)? + gmp, (Up)? = /%mpi/(U}éi)2 + 3mp,(Up,)?) and define the coefficient of restitu-
_up -up

Up,—Up,

tion of the particle ep = which account for the energy lost during the dissipative

collision. It gives:
, mpiUnb—i—mijnA-i-Epm‘Dj Uz —UR
Up = ——" £ U, ~Uk) (1.19)
' mep, + mp;

1.4.2 Collision of a particle with the wall

In this part the unit vector n and t are respectively the unit vector normal and tangential to
the wall. The velocity of the particle P after collision is

Up=Uin+Ubt (1.20)
The normal component of the particle velocity after a collision with the wall is evaluated as
U = —e,Up (1.21)

where ¢,, € [0,1] is the coefficient of restitution of the wall. The tangential component of the
velocity will decrease after the collision with the wall

UL = (1= pw)Ub (1.22)

1.4. COLLISION CHAPTER 1. THEORY

where (1, € [0, 1] is the coefficient of friction of the wall.
The coefficients of restitution and friction are determined experimentally. They depend
mainly on the materials, the surface and the impact velocity.

Chapter 2

OpenFOAM

In OpenFOAM, lagrangian particle tracking is used to track spray like in dieselFoam, a solver
for diesel spray and combustion. Another alternative is icoLagragianFoam which is available
on the wiki page

http://openfoamwiki.net/index.php/Contrib_icoLagrangianFoam

where the description is

The particle code is a heavily lobotomized version of stuff found in the dieselSpray
classes. It features:

* a simple random injector

* a drag force model that is horrible and not very physical

* particles can bounce from walls or die (switchable)

* particles leave the system at in or outlet. All other boundary types are not
treat correctly

+ the particles can add a source term to the moment equation of the gas (switchable)
* there 1s no particle-particle interaction

This solver is not to be used for simulations that resemble the real world.
It’s just a demo.

In this chapter we compare the way icolagrangianFoam and dieselFoam solve the equations
described in Chapter 1.

2.1 Momentum equation (1.1)

2.1.1 icoLagrangianFoam : icoLagrangianFoam.C

fvVectorMatrix UEqQn
(
fvm: :ddt (U)
+ fvm::div (phi, U)
- fvm::laplacian(nu, U)
== cloud.momentumSource ()

)
solve (UEgn == —-fvc::grad(p));

This corresponds to equation (1.1) divided by the density. Gravity is neglected and there is
no turbulence. icolagrangianFoam is based on icoFoam which is a transient solver for incom-
pressible, laminar flow of Newtonian fluids.

2.2. EQUATIONS (1.2) AND (1.3) CHAPTER 2. OPENFOAM

2.1.2 dieselFoam : dieselEngineFoam/UEqn.H

fvVectorMatrix UEqQn
(
fvm: :ddt (rho, U)
fvm::div (phi, U)
turbulence->divDevRhoReff (U)

nm + +

rhoxg
+ dieselSpray.momentumSource ()

if (momentumPredictor)

solve (UEgn == —-fvc::grad(p));
}

where divDevRhoReff is the deviatoric stress tensor defined by

divDevRhoReff =- fvm::laplacian(muEff (), U)
- fvc::div(muEff () xdev2 (fvc::grad(U) () .T()))

This is similar to equation (1.1) for laminar or turbulent flow except that it also allows for
variable density.

2.2 Equations (1.2) and (1.3)

2.2.1 icoLagrangianFoam : IncompressibleCloudl.H

tsource () .internalField() = smoment_/runTime_.deltaT () .value()/mesh_.V ()
/constProps () .density_;

This corresponds to equation (1.3) divided by p to be consistent with the momentum equation
in icoLagrangianFoam. And smoment is calculated in the function move of the class HardBall-
Particle. (in HardBallParticle.C)

vector oMom=U () *m() ;
updateProperties (deltaT,data,cellI, face());
vector nMom=U () *m() ;
data.cloud () .smoment () [cellI] += oMom—nMom;

This is similar to equation (1.2).

2.2.2 dieselFoam : lagrangian/dieselSpray/InInclude/sprayl.H
tsource () .internalField() = sms_/runTime_.deltaT () .value () /mesh_.V();

This is similar to equation (1.3). And sms is calculated in the function move of the class parcel.
(in src/lagrangian/dieselSpray/parcel/parcel.C)

vector oMom = m()*U();

// update the parcel properties (U, T, D)
updateParcelProperties (dt,sDB,celli, face());
vector nMom = m()+U();

// Update the Spray Source Terms

sDB.sms () [celli] += oMom - nMom;

This is similar to equation (1.2)

2.3. EQUATION (1.12) CHAPTER 2. OPENFOAM

2.3 Equation (1.12)
2.3.1 icoLagrangianFoam : HardBallParticle.C

vector Upos=data.UInterpolator () .interpolate (position(),cellI, facel);
scalar coeff=dt/relax;
U()=(U() + coeff*Upos + data.constProps().g()=*dt)/ (1. + coeff);

This is similar to equation (1.12) with Upos = UQP and relax = 7,

2.3.2 dieselFoam : lagrangian/dieselSpray/parcel/parcel.C

vector Up = sDB.UInterpolator().interpolate (position(), celli, facei)+ Uturb();
scalar timeRatio = dt/tauMomentum;
U() = (U() + timeRatioxUp + sDB.g()*dt)/ (1.0 + timeRatio);

This is similar to equation (1.12) with U, = UQP and tauM omentum = 7,

2.4 Equation 1.9
2.4.1 icoLagrangianFoam : HardBallParticle.C

relax=1/ (data.constProps () .dragCoefficient () x (d_*d_) /mass_);
The relaxation time is defined as 7, = "> witch doesn’t correspond to the relaxation time

defined above in (1.9). We propose a modification of relax in Chapter 5.

2.4.2 dieselFoam : lagrangian/dieselSpray/parcel/setRelaxationTimes.C

tauMomentum = sDB.drag () .relaxationTime (Urel (Up),d(),rho,liquidDensity, nuf,dev());

The relaxationTime function is described in src/lagrangian/dieselSpray/spraySubModels/drag-
Model/standardDragModel/standardDragModel.C

scalar standardDragModel::relaxationTime
scalar Re = mag(URel)xdiameter/nu;
if (Re > 0.1)
{
time = 4.0xliquidDensityxdiameter / (3.0xrhoxCd(Re, dev)*mag(URel));
}
else
{
time = liquidDensityxdiameter*diameter/ (18xrhoxnu* (1.0 + Cdistort_xdev));

}

This is similar to equation (1.9). Indeed for Re > 0.1 it is exactly the same equation with
liguidDensity = pp, and the fluid density and viscosity are rho and nu. For Re < 0.1, the

. . . . D D2
equation (1.9) with Cp = 24/Rep is written here as 7p = 3 =t ool %p’;f
1lU-Up :

Pf o Dplo-—0Op

2.5. EQUATION (1.10) CHAPTER 2. OPENFOAM

2.5 Equation (1.10)

2.5.1 icoLagrangianFoam

The drag coefficient is a constant given in the dictionary /constant/cloudproperties and
read in HardBallParticle.C

dragCoefficient_ (readScalar (dict.lookup ("drag")))

2.5.2 dieselFoam : lagrangian/dieselSpray/spraySubModels/dragMod-
el/standardDragModel/standardDragModel.C

scalar standardDragModel: :Cd
(const scalar Re,const scalar dev) const({
scalar drag = CdLimiter_;
if (Re < Relimiter)
{drag = 24.0% (1.0 + preReFactor_x*pow (Re, ReExponent_))/Re;
}
return drag;

}
The coefficients are defined in a dictionary in /constant/sprayProperties

standardDragModelCoeffs
{

preReFactor 0.166667;
ReExponent 0.666667;
RelLimiter 1000;
CdLimiter 0.44;
Cdistort 2.632;

}

This is similar to equation (1.10).

2.6 Equation (1.13)

This equation is used both in icoLagrangianFoam (HardBallParticle.C) and dieselFoam (la-
grangian/dieselSpray/parcel/parcel.C).

// set the lagrangian time-step
scalar dt = min(dtMax, tEnd);

// Track and adjust the time step if the trajectory is not completed

dt *= trackToFace (position() + dtxU_, sDB);

// Decrement the end-time acording to how much time the track took

tEnd —-= dt;
// Set the current time-step fraction.
stepFraction() = 1.0 - tEnd/deltaT;

The function trackToFace (described in Particle.C) tracks particle to a given position and
returns 1.0 if the trajectory is completed without hitting a face otherwise stops at the face and
returns lambdaMin which is the fraction of the trajectory completed to reach the first face.

2.7. EQUATION (1.19)

CHAPTER 2. OPENFOAM

if (faces.empty()) // inside cell

{

trackFraction = 1.0;
position_ = endPosition;

}

else // hit face

{

scalar lambdaMin = GREAT;

faces[0],

stepFraction_);

if (faces.size() == 1) //the particle has to cross only one face
{
lambdaMin = lambda (position_, endPosition,
facei_ = faces[0];
}
else

{

forAll (faces, 1i)

{

scalar lam = lambda (position_, endPosition,
if (lam < lambdaMin)

{ lambdaMin = lam;
facei_ = faces[i];
}
}
}
trackFraction = lambdaMin;

faces([1i],

position_ += trackFractionx(endPosition - position_);

// If the particle has to cross more than one cell, find the first one

stepFraction_);

If the particle reaches the final position endPosition = position -+ dt * U without crossing a cell,
the function return 1 and position is updated to endPosition. If the particle has to cross one or
more cells, the fraction of trajectory lambdaMin for this lagrangian time step is evaluated and
position is updated at the face with position = position + lambdaMin x (end Position — position).
This is similar to equation (1.13).

2.7 Equation (1.19)

e InicoLagrangianFoam the particle collision is not implemented.

e Two particle collision models are avalaible in

lagrangian/dieselSpray/spraySubModels/collisionModel.

In O’rourk model collision occurs if particles are in the same cell, even if they are not
moving towards each other. The trajectory model described in the previous chapter is
presented here.

vector
vector
vector
scalar

vl = pl().0();
v2 = p2().U();
vRel = vl - v2;
prob = rndGen_.scalar01();

gf = sqrt (prob)

nl

pl () .N(rhol);

n2 = p2().N(rho2);

scalar
scalar
vector
vector

ml = pl().m();

m2 = p2().m();

mr = ml*vl + m2*v2;

vlip = (mr + m2xgf*vRel)/ (ml+m2);

10

2.8. EQUATION (1.21)

CHAPTER 2. OPENFOAM

vector v2p = (mr - mlxgfxvRel)/ (ml+m2);
if (nl < n2) {
pl().U() = vip;
P2 () .U() = (nl*v2p + (n2-nl)=*v2)/n2;

}
else {

pl().U() = (n2*«vlp + (nl-n2)xvl)/nl;
p2() .U() = v2p;

}

This is similar to equation (1.19) exept that the coefficient of restitution is not a fixed value.

It is the random scalar gf.

2.8 Equation (1.21)

This equation is used both in icoLagrangianFoam (in the function move of HardBallParticle)
and dieselFoam (called in the function move of parcel (with boundaryTreatment.H and de-
scribed in lagrangian/dieselSpray/spraySubModels/wallModel/reflectParcel))).

// wallNormal defined to point outwards of domain

vector Sf =

Sf /= mag (S

scalar Un =

if (Un > 0)
{

£);
p.U() & Sf;

p.U() —= (1.0 + elasticity_)«UnxSf;

}

This is similar to equation (1.21) .

11

mesh_.Sf () .boundaryField () [patchi] [faceil];

Chapter 3

Update icoLagrangianFoam for
OpenFOAM-1.6

The solver icoLagrangianFoam is at the time of writing this tutorial only avilable for OpenFOAM-
1.5. This chapter describes how to update it to OpenFOAM-1.6. The 1.5 version can be down-
lowded with

svn checkout https://openfoam-extend.svn.sourceforge.net/svnroot/openfoam-extend/trunk/
Breeder_1.5/solvers/other/IcolLagrangianFoam/

See the OpenFOAM wiki page for more informations:

http://openfoamwiki.net/index.php/Contrib_icoLagrangianFoam

3.1 createParticles.H

Change from
volPointInterpolation vpi (mesh, pMesh);
to

volPointInterpolation vpi (mesh);

3.2 HardBallParticle.H

After the already available hitPatch functions, add

bool hitPatch
(
const polyPatchg,
HardBallParticle: :trackDataé& td,
const label patchI
)
bool hitPatch
(
const polyPatché& p,
int& td,
const label patchI
)i

12

3.3. HARDBALLPARHNHTER 3. UPDATE ICOLAGRANGIANFOAM FOR OPENFOAM-1.6

3.3 HardBallParticle.C

After the already available hitPatch functions, add

bool Foam::HardBallParticle::hitPatch

(
const polyPatchg,
HardBallParticle: :trackDatag,
const label

return false;

}
bool Foam::HardBallParticle::hitPatch

(
const polyPatchg,
integ,
const label

return false;

}
In order to enable reading of the position of the particles at restart, change from
Particle<HardBallParticle> (cloud, is)
to

Particle<HardBallParticle> (cloud, is,readFields)

3.4 HardBallParticleIO.C

Changehlvoid HardBallParticle::writeFields (const IncompressibleCloud &c)
from

IOField<scalar> d(c.fieldIOobject ("d"),np);
IOField<scalar> m(c.fieldIOobject ("m"),np);
IOField<vector> U(c.fieldIOobject ("U"),np);

to

IOField<scalar> d(c.fieldIOobject ("d", IOobject::NO_READ),np);
IOField<scalar> m(c.fieldIOobject ("m", IOobject::NO_READ),np);
IOField<vector> U(c.fieldIOobject ("U", IOobject::NO_READ),np);

Change in void HardBallParticle::readFields (IncompressibleCloud s&c) from

IOField<scalar> d(c.fieldIOobject ("d"));
IOField<scalar> m(c.fieldIOobject ("m"));
IOField<vector> U(c.fieldIOobject ("U"));
to

IOField<scalar> d(c.fieldIOobject ("d", IOobject::MUST_READ));
IOField<scalar> m(c.fieldIOobject ("m", IOobject::MUST_READ)) ;
IOField<vector> U(c.fieldIOobject ("U", IOobject::MUST_READ));

13

3.5. INCOMPRESSTBIARNIER H).UPDATE ICOLAGRANGIANFOAM FOR OPENFOAM-1.6

3.5 IncompressibleCloud.C

Change in the function evolve () from

autoPtr<interpolation<vector> > UInt = interpolation<vector>::New
(
interpolationSchemes_,
volPointInterpolation_,
U

)i
to

autoPtr<interpolation<vector> > UInt = interpolation<vector>::New
(
interpolationSchemes_,
U

)

14

Chapter 4

pisoLagrangianFoam

To be able to model the lagrangian particle tracking and a turbulent flow we need to include
the LPT files from icoLagrangianFoam in the pisoFoam solver. pisoFoam is a transient solver
for incompressible flow where turbulence modelling is generic, i.e. laminar, RAS or LES may
be selected. We call the LPT solver based on pisoFoam pisoLagrangianFoam.

In the following the sed command has been written on several lines to make it easier to
read the tutorial. But the command shall be written without breaking the line. It should be
written on one line without space: sed ’'s/a/b/g’ filel>file2

First, update icolagrangianFoam to version 1.6.

cd SWM_PROJECT_USER_DIR/applications

cp —-r SWM_PROJECT_DIR/applications/solvers/incompressible/pisoFoam
cp icolLagrangianFoam/*Particlex pisoFoam/

cp icolLagrangianFoam/IncompressibleCloud* pisoFoam/

mv pisoFoam pisoLagrangianFoam

cd pisolLagrangianFoam

sed ’"s/#include "turbulenceModel.H"/
#include "turbulenceModel.H"
#include "HardBallParticle.H"
#include "IncompressibleCloud.H"

/g’ pisoFoam.C > templ

sed "s/#include "createFields.H"/
#include "createFields.H"
#include "createParticles.H"

/g’ templ > temp2

sed ’s/#include "CourantNo.H"/
#include "CourantNo.H"
#include "moveParticles.H"

/g’ temp2 > temp3

sed ’"s/+ turbulence->divDevReff (U)/
+ turbulence->divDevReff (U)

== cloud.momentumSource ()

/g’ temp3 > pisolLagrangianFoam.C

sed ’"s/pisoFoam.C/

pisolagrangianFoam.C
HardBallParticle.C

15

CHAPTER 4. PISOLAGRANGIANFOAM

IncompressibleCloud.C
HardBallParticleIO.C
IncompressibleCloudIO.C

/g’ Make/files > Make/temp4

sed '/ (FOAM_APPBIN) /pisoFoam/
(FOAM_USER_APPBIN) /pisoLagrangianFoam
/g’ Make/temp4 > Make/files

sed 's/-I$(LIB_SRC)/finiteVolume/lnInclude/
—-IS(LIB_SRC)/finiteVolume/lnInclude \
-I$(LIB_SRC)/lagrangian/basic/lnInclude

/g’ Make/options > Make/temp5

sed ’s/-1finiteVolume/
—-1finiteVolume \
-llagrangian

/g’ Make/temp5 > Make/files

rm tempx*
wmake

16

Chapter 5

Improvement in
icolagrangianFoam

5.1 Particle injection

The function inject is defined in IncompressibleCloud.C. It injects one particle at each time step
between tStart and tEnd, only if a calculated random number (in [0, 1]) is smaller than thres.
tStart,tEnd and thres are defined by the user in a dictionary (constant/cloudProperties).
The position of the particle injected is in a sphere of center and radius 70 defined by the user.
The initial velocity and diameter of the particle are U, = vell + randomscalar * vel0 and D, =
randomscalar * d1 + d0 where vel0, vell, d0, d1 are also defined by the user.

To be able to inject several particles at each time step, we make the following changes:

// scalar prop=random() .scalar01();
// if (prop<td.constProps () .thres_) {
for (label iter=1; iter<=td.constProps () .nbInjByDt_; iter++) {

where nbInjByDt is the number of particles injected at each time step, defined in cloudProperties
and read in HardBallParticle.C

// thres_ (readScalar (dict.subDict ("injection") .lookup ("thres"))),
nbInjByDt_ (readScalar (dict.subDict ("injection") .lookup ("nbInjByDt"))),

In HardBallParticle.H, we add

// scalar thres_;
scalar nbInjByDt_;

5.2 Drag and relaxation Time

In order to have a more reliable value for the relaxation time, we make the following change
in HardBallParticle.C:

// scalar relax=1/(data.constProps () .dragCoefficient () * (d_*d_)/mass_);
scalar Rep=data.rho_s*mag (U ()-Upos)*d_/data.mu_;
scalar Cd=0.44;
if (Rep<l1000)
{Cd=24.0/Rep* (1.0+1.0/6.0xpow (Rep,2/3)); }
scalar relax =GREAT;
if (Rep>0.1)
{relax =4/3+data.constProps () .density_xd_/ (data.rho_x*Cd*mag (U()-Upos));}

17

5.2. DRAG AND RELAXATION'HBWWPHER 5. IMPROVEMENT IN ICOLAGRANGIANFOAM

else
{ relax =data.constProps () .density_=*d_xd_/ (18+data.mu_);}

In order to evaluate the particle Reynolds number and the relaxation time, we introduced
references to the density and viscosity of the physical field. Therefore we also need to include

rho and mu as member of the class trackData. This implies the following changes:

e in HardBallParticle.H:

public:

trackData (
IncompressibleCloud &cloud,
interpolation<vector> &Uint_,
scalar &rho_,
scalar &mu_
)i
IncompressibleCloud &cloud() { return cloud_; }
scalar &rho_;
scalar &mu_;

e in HardBallParticle.C:

HardBallParticle: :trackData: :trackData (

IncompressibleCloud &cloud,
interpolation<vector> &Uint,
scalar &rho,

scalar &mu

Particle<HardBallParticle>::trackData (cloud),
cloud_(cloud),
constProps_ (cloud.constProps()),
wallCollisions_ (0),
leavingModel_ (0),
injectedInModel_ (0
changedProzessor_ (
UInterpolator_ (Uin
rho_ (rho),
mu__(mu)
{
}

)
0),
t)

4

¢ in IncompressibleCloud.C, inside the part Construct from components

IncompressibleCloud: : IncompressibleCloud (

rho__
mu__

const volPointInterpolationé& vpi,
const volVectorFields U,

scalaré& rho,

scalar& mu)

(rho),
(mu) ,

e in IncompressibleCloud.C, inside the function evolve()

18

//added
//added

//added
//added

//added
//added

//added
//added

//added
//added

//added
//added

5.3. VOLUME FRACTION OF CARPIFIRES IMPROVEMENT IN ICOLAGRANGIANFOAM

HardBallParticle::trackData td(xthis,UInt (), rho_,mu_);
¢ in IncompressibleCloud.H

// References to the physical fields
const volVectorFieldé& U_;
scalaré& rho_; //added
scalar& mu_; //added
// Constructors
IncompressibleCloud (
const volPointInterpolation& vpi,
const volVectorFieldé& U,
scalar& rho_, //added
scalar& mu_ //added

e In createFields.H add

scalar rho(readScalar (transportProperties.lookup ("rho")));
scalar mu(readScalar (transportProperties.lookup ("mu")));

5.3 Volume fraction of particles

For postprocessing purpose we store the position, velocity, mass and diameter for each particle.
Particles can be seen using foamToVTK, paraview and the glyph utility. But this is not conve-
nient for a case with a large number of particles. By introducing a volScalarField vol Frac that
represents the volume fraction of particles in each cell, we can simply see the particle distribu-
tion in the domain with paraFoam. The volume fraction is vol frac = nbP.V,,/AV, where nbP is
the number of particles in a unit volume of fluid AV and V,, is the volume of a particle.

e In HardBallParticle.C, in the function move (just before the return statement) add
if (data.keepParticle)
{data.cloud().anVp()[cell()]+=(4/3*3.l4*pow(d(),3)/8);
}

e In IncompressibleCloud.C, after smoment_ (mesh_.nCells (), vector::zero), add
nbPVp_ (mesh_nCells(),0.0);

and in the function evolve (), after smoment_ = vector::zero;, add

nbPVp_=0 ;

e In IncompressibleCloud.H, in private data, add
scalarField nbPVp_;

and in public member functions add

scalarField &nbPVp () { return nbPVp_; }
inline tmp<volScalarField> volFrac() const;

19

5.3. VOLUME FRACTION OF CARPIFIRES IMPROVEMENT IN ICOLAGRANGIANFOAM

e In IncompressibleCloudI.H, add

inline tmp<volScalarField> IncompressibleCloud::volFrac() const
{
tmp<volScalarField> vF
(
new volScalarField
(

IOobject
(

"yE",

runTime_ .timeName (),

mesh_,

IOobject: :NO_READ,

IOobject::AUTO_WRITE
)I
mesh_,
dimensionedScalar
(

"vE",

dimless,

0.0

)i
vF () .internalField() = nbPVp_/mesh_.V();

return vF;

}
e The volScalaField volfrac is defined in createParticles.H by adding

volScalarField volfrac
(
IOobject
(
"volfrac",
runTime.timeName (),
mesh,
IOobject::READ_IF_PRESENT,
IOobject::AUTO_WRITE

mesh

)i
e And it is updated in icoLagrangianFoam.C

#include "moveParticles.H"
volfrac=cloud.volFrac(); //added

20

Chapter 6

Improvement in solidParticle

The solidParticle class has been recently introduced in OpenFOAM. It is a one-way coupling
LPT which tracks a defaultCloud and uses the same libraries as dieselFoam. There is no
injector. In this part we describe how to add an injector and the scalarField volFrac as we did
in icoLagrangianFoam in the previous chapter.

6.1 Particle injection

The injector send nbInjByDt particles at each time step between tStart and tEnd, in a rectan-
gle of center and side r0 defined by the user in the dictionary (constant /particleProperties).
The initial velocity of the particle is U, = vel + randomscalar * velprime. The parameters for
the velocity vel and velprime, the diameter d, the density rhop, the coeffitient of restitution e
and friction mu are also defined by the user.

cd $WM_PROJECT_USER_DIR/applications
cp —-r S$SWM_PROJECT_DIR/src/lagrangian/solidParticle
mv solidParticle mySolidParticleFoam

Create the directory Make, the files solidParticleFoam.C and createFields.H exactly like in the
solver solidParticleFoam available at
http://openfoamwiki.net/index.php/Contrib_solidParticleFoam

e In solidParticleCloud.C, add

mu_ (dimensionedScalar (particleProperties_.lookup ("mu")) .value()),

nbInjByDt_ (dimensionedScalar (particleProperties_.lookup ("nbInjByDt")) .value()),
center_(dimensionedVector (particleProperties_.lookup ("center")) .value()),

r0_ (dimensionedVector (particleProperties_.lookup ("r0")) .value()),

d_ (dimensionedScalar (particleProperties_.lookup ("d")) .value()),
vel_(dimensionedVector (particleProperties_.lookup("vel")) .value()),

velprime_ (dimensionedScalar (particleProperties_.lookup ("velprime")) .value()),
tInjStart_ (dimensionedScalar (particleProperties_.lookup ("tInjStart")) .value()),
tInjEnd_ (dimensionedScalar (particleProperties_.lookup ("tInjEnd")) .value()),

random_ (666)
e In solidParticleCloud.C, in the function move, add
Cloud<solidParticle>: :move (td)

if (mesh_.time () .value ()>td.spc() .tInjStart_ &&
mesh_.time () .value ()<td.spc () .tInjEnd_)

21

6.1. PARTICLE INJECTION CHAPTER 6. IMPROVEMENT IN SOLIDPARTICLE

{
this->inject (td);
}

e In solidParticleCloud.C, add the function inject

void Foam::solidParticleCloud::inject (solidParticle: :trackData &td) {
for (label nbP=1; nbP<=td.spc () .nbInjByDt (); nbP++) {

vector tmp=(random () .vector0l()- vector(0.5,0.5,0.5))%2;
vector center=td.spc() .center();
vector rO=td.spc().r0();

scalar posx=tmp.x () *r0.x(
scalar posy=tmp.y () *r0.y(
(
(

)i
)
scalar posz=tmp.z()*r0.z()
vector pos=center+vector (posx,posy,posz) ;
// 1f 2D and cell center is z=0, all particles should be injected at z=0
// and the position should be set to
// vector pos=center+vector (posx,posy,0);
vector tmpv=vector (random() .GaussNormal (),
random () .GaussNormal (), random () .GaussNormal ()) /sqgrt (3.);
vector vel=tmpvxtd.spc () .velprime()+td.spc().vel();
label cellI=mesh_.findCell (pos);
if (cellI>=0)
{
solidParticlex ptr= new solidParticle(xthis,pos,celll,td.spc().d(),vel);
Cloud<solidParticle>::addParticle (ptr);
}

}
e In solidParticleCloud.H

#include "IOdictionary.H"
#include "Random.H"

scalar mu_;

scalar nbInjByDt_;
vector center_;
vector r0_;

scalar d_;

vector vel_;
scalar velprime_;
scalar tInjStart_;
scalar tInjEnd_;
Random random_;

inline scalar mu() const;

inline scalar nbInjByDt () const;
inline vector center () const;
inline vector r0() const;

inline scalar d{() const;

inline vector vel () const;

inline scalar velprime() const;
Random &random() {return random_; }

22

6.2. DRAG AND RELAXATION TIME CHAPTER 6. IMPROVEMENT IN SOLIDPARTICLE

void inject (solidParticle::trackData &td);
e Add in solidParticleCloudI.H

inline Foam::scalar Foam::solidParticleCloud: :nbInjByDt () const

{
return nbInjByDt_;
}
inline Foam::vector Foam::solidParticleCloud::center () const

{

return center_;

}
inline Foam: :vector Foam::solidParticleCloud::r0() const

{

return r0_;

}

inline Foam::scalar Foam::solidParticleCloud::d() const

{

return d_;

}

inline Foam::vector Foam::solidParticleCloud::vel () const

{

return vel_;

}
inline Foam::scalar Foam::solidParticleCloud::velprime () const

{

return velprime_;

}

6.2 Drag and relaxation Time

The inverse of the relaxation time (Dc = 1/7,) is defined in solidParticle.C

scalar ReFunc = 1.0;
scalar Re = magUrxd_/nuc;
if (Re > 0.01)
{
ReFunc += 0.15%xpow(Re, 0.687);
}
scalar Dc = (24.0+xnuc/d_)*ReFuncx* (3.0/4.0) * (rhoc/ (d_*rhop)) ;

As presented in the first chapter, the threshold value of Re, is 0.1. There is a misprint in
the code. It is important to correct it in order to get a good estimation of the drag coefficient:
change if (Re > 0.01) to if (Re > 0.1).

6.3 Volume fraction of particles

e In solidParticle.C, in the function move (just before the return statement) add

if (td.keepParticle)

{
label cellnew = cell();

23

6.3. VOLUME FRACTION OF PARTICHA®TER 6. IMPROVEMENT IN SOLIDPARTICLE

td.spc() .nbPVp () [cellnew]+=(4/3*3.14*pow(d_,3)/8);
}

e In solidParticleCloud.C (after random_ (666),) add
nbPVp_ (mesh_.nCells (), 0.0)
and in the function move (before solidParticle: :trackData ...)add
nbPVp_ = 0.0;
e In solidParticleCloud.H, in private data, add
scalarField nbPVp_;
and in public member functions, add

scalarField &nbPVp () { return nbPVp_; }
inline tmp<volScalarField> volFrac() const;

e Add at the end of solidParticleCloudI.H

namespace Foam
{
inline tmp<volScalarField> solidParticleCloud::volFrac() const
{
tmp<volScalarField> vF
(
new volScalarField
(
IOobject
(
"VF",
//runTime_ .timeName (),
mesh_,
IOobject: :NO_READ,
IOobject::AUTO_WRITE
)I
mesh_,
dimensionedScalar
(
"VE",
dimless,
0.0

)
)
vF () .internalField() = nbPVp_/mesh_.V();
return vF;
}
}

e The volScalarField volfrac is defined in createFields.H by adding

24

6.3. VOLUME FRACTION OF PARTICHA®TER 6. IMPROVEMENT IN SOLIDPARTICLE

volScalarField volfrac
(

IOobject

(

"volfrac",
runTime.timeName (),

mesh,
IOobject::READ_IF_PRESENT,
IOobject::AUTO_WRITE

)y

mesh

)i
e And it is updated in solidParticleFoam.C

particles.move (g);
volfrac= particles.volFrac();
runTime.write () ;

//added

25

Chapter 7

Test case

In this part we use the injector of particles in the tutorial case pitzDaily, and we plot vol frac
to see the particles distribution in ParaFoam. The tutorial pitzDaily illustrates the solver
simpleFoam which is a solver for incompressible fluid. We use the converged solution (i.e. the
solution at t=1000) as initial flow condition for LPT computations. The files used in this test
case and the LPT solver are available at the homepage of the course.

e copy the tutorial pitzDaily
e run blockMesh

e copy the provided folder 1000 or run simpleFoam and add the file 1000/volFracorg (cp
1000/p 1000/volFracorg and change dimension to[0 00...] and object ptoobject volFracorg
)

e add the provided file g in constant/

dimensions [01 -2 00 0 0];
value (000);

e add density in constant/transportProperties

rho rho [1 -3 00 00 0] 1000;

e add the provided file particleProperties in constant/

rhop rhop [1 -3 0 0 0 0 0] 1000;

e e [0O O O O O 0 0] 0.8;

mu mu [0 0 O 0 O 0 0] 0.2

nbInjByDt nbInjByDt [0O O O O O O 0] 500;
center center [O 1 O O O O 0] (0.02 0.0 0.0);

rOr0O T O 1 0 0 0O 0 0] (0.01 0.01 0.0);
dd[0 1 0 0 0 0 0] 5e-5;

vel vel [O 1 -1
velprime velprime [
tInjStart tInjStart
tInjEnd tInjEnd [1

0] 0 ;
0 0O 0 0O 0 0] 1000;
0 0 0 0 0] 5000,

These entries means that 500 particles of diameter 5e-5m and velocity Om/s are injected

per time step from a flat box of center (0.02,0,0) and sides ([-0.01,0.01], [-0.01,0.01], 0.0) ,
as shown here:

26

CHAPTER 7. TEST CASE

o U Magnitude
[. 25, 2, 75,10

o] 10.1678

Box of injection of particles, velocity at t=1000

e The lengh of the domain is 0.311m. The maximum flow velocity in this direction is
10.1m/s. It means that a particle following such a stream line will leave the domain 0.03s
after its injection. As we want to follow the path of the particles, we need to have a time
step much smaller than 0.03s. We choose 0.003s, and write the results every time step,
until t=1001. We start the LPT computation and the particles injection at t=1000, i.e. the
flow already converged to a steady state solution. The LPT solver only tracks particles in
the flow, it doesn’t solve for flow velocity and pressure. The file system/controlDict is now

startFrom startTime;
startTime 1000;
stopAt endTime;
endTime 1000.3;
deltaT 0.003;
writeControl timeStep;
writeInterval 1;
timePrecision 12;

To be able to write the results in a folder with name 1000.003, the entry timePrecision
was changed from the default value 6 to 12. (Otherwise the folder 1000 will be overwrit-
ten several times).

e run the solver mySolidParticleFoam provided

The results show that a larger amount of particles follow the stream lines in the region of low
velocity and recirculation.

27

CHAPTER 7. TEST CASE

o volFracorg
L, 00004 | 00008 | 0.00]

0 0.0015

Figure 1: distribution of the volume fraction of particles at t=1000.3, dt=3e-3.

We see that the distribution of particles draw some kind of stripes. This is due to the injector
that injects particles as a pulsation at every time step. Reducing the time step would produce a
more continuous inflow of particles and a more homogeneous distribution of particles, as shown
in figure 2 (dt= 3e-5 and nbInjByDt=5 in order to have the same final amount of particles as in
the first case).

0.0004 0.0008 0.001
MU MERREN S a ARRNN

i
0 0.00139

Figure 2: distribution of the volume fraction of particles at t=1000.3, dt=3e-5.

28

