
Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 43

How to implement your own application

• The applications are located in the $WM_PROJECT_DIR/applications directory

(equivalent to $FOAM_APP).

• Copy an application that is similar to what you would like to do and modify it for your

purposes. In this case we will make our own copy of the icoFoam solver and put it in our

$WM_PROJECT_USER_DIR with the same file structure as in the OpenFOAM installation:

cd $WM_PROJECT_DIR
cp -riuv --parents --backup applications/solvers/incompressible/icoFoam \

$WM_PROJECT_USER_DIR
cd $WM_PROJECT_USER_DIR/applications/solvers/incompressible
mv icoFoam myIcoFoam
cd myIcoFoam
wclean
mv icoFoam.C myIcoFoam.C

• Modify Make/files to:

myIcoFoam.C
EXE = $(FOAM_USER_APPBIN)/myIcoFoam

• Compile with wmake in the myIcoFoam directory. rehash if necessary.

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 44

Add a passive scalar transport equation (1/3)

• Let’s add, to myIcoFoam, the passive scalar transport equation

∂s

∂t
+ ∇ · (u s) = 0

• We must modify the solver:

− Create volumeScalarField s (do the same as for p in createFields.H)

− Add the equation solve(fvm::ddt(s) + fvm::div(phi, s));
before runTime.write(); in myIcoFoam.C.

− Compile myIcoFoam using wmake

• We must modify the case - next slide ...

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 45

Add a passive scalar transport equation (2/3)

• We must modify the case:

− Use the icoFoam/cavity case as a base:

run
cp -r $FOAM_TUTORIALS/icoFoam/cavity passiveCavity
cd passiveCavity

− Copy the 0/p file to 0/s and modify p to s in that file. Choose approprate dimensions

for the scalar field (not important now).

− In fvSchemes, add:
div(phi,s) Gauss linearUpwind Gauss;

− In fvSolution, add:
s PBiCG
{

preconditioner DILU;
tolerance 1e-05;
relTol 0;

};
(if you use PCG, as for p, OpenFOAM will complain - try it yourself!)

• We must initialize and run the case - next slide ...

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 46

Add a passive scalar transport equation (3/3)

• We must initialize s:

− Copy setFieldsDict from the damBreak tutorial.

− Set defaultFieldValues:
volScalarFieldValue s 0

− Modify the bounding box to:

box (0.03 0.03 -1) (0.06 0.06 1);

− Set fieldValues:
volScalarFieldValue s 1

• Run the case:

blockMesh
setFields
myIcoFoam
paraFoam - color by s (cell value) and run an animation.

• You can see that although there is no diffusion term in the equation, there is massive diffu-

sion in the results. This is due to mesh resolution, numerical scheme etc. The interfoam
solver has a special treatment to reduce this kind of diffusion.

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 47

A look inside icoFoam

• The icoFoam directory consists of the following:

createFields.H Make/ icoFoam.C

• The Make directory contains instructions for the wmake compilation command.

• icoFoam.C is the main file, and createFields.H is an inclusion file, which is included in

icoFoam.C.

• In the header of icoFoam.C we include fvCFD.H, which contains all class definitions that

are needed for icoFoam. fvCFD.H is included from (see Make/options):
$WM_PROJECT_DIR/src/finiteVolume/lnInclude, but that is actually only a link to

$WM_PROJECT_DIR/src/finiteVolume/cfdTools/general/include/fvCFD.H.
fvCFD.H in turn only includes other files that are needed (see next slide).

• Hint: Use find PATH -iname "*LETTERSINFILENAME*" to find where in PATH a file

with a file name containing LETTERSINFILENAME in its file name is located.

In this case: find $WM_PROJECT_DIR -iname "*fvCFD.H*"

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 48

A look inside icoFoam, fvCFD.H

#ifndef fvCFD_H
#define fvCFD_H

#include "parRun.H"

#include "Time.H"
#include "fvMesh.H"
#include "fvc.H"
#include "fvMatrices.H"
#include "fvm.H"
#include "linear.H"
#include "calculatedFvPatchFields.H"
#include "fixedValueFvPatchFields.H"
#include "adjustPhi.H"
#include "findRefCell.H"
#include "mathematicalConstants.H"

#include "OSspecific.H"
#include "argList.H"
#include "timeSelector.H"

#ifndef namespaceFoam
#define namespaceFoam

using namespace Foam;
#endif

#endif

The inclusion files are all class

definitions that are used in

icoFoam. Dig further into the

source file to find out what these

classes actually do.

At the end we say that we

will use all definitions made in

namespace Foam.

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 49

A look inside icoFoam

• icoFoam starts with

int main(int argc, char *argv[])

where int argc, char *argv[] are the number of parameters, and the actual parame-

ters used when running icoFoam.

• The case is initialized by:

include "setRootCase.H"

include "createTime.H"
include "createMesh.H"
include "createFields.H"
include "initContinuityErrs.H"

where all inclusion files except createFields.H are included from

src/OpenFOAM/lnInclude and src/finiteVolume/lnInclude. Have a look at them

yourself. (find them using the find command)

• createFields.H is located in the icoFoam directory. It initializes all the variables used

in icoFoam. Have a look inside it and see how the variables are created from files.

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 50

A look inside icoFoam

• The time loop starts by:

for (runTime++; !runTime.end(); runTime++)

and the rest is done at each time step.

• The fvSolution subdictionary PISO is read, and the Courant number is calculated and

written to the screen by (use the find command)

include "readPISOControls.H"
include "CourantNo.H"

• We will now discuss the PISO algorithm used in icoFoam, in words, equations and code

lines.

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 51

The PISO algorithm: The incompressible flow equations (1/7)

(Acknowledgements to Professor Hrvoje Jasak)

• In strictly incompressible flow the coupling between density and pressure is removed, as

well as the coupling between the energy equation and the rest of the system.

• The incompressible continuity and momentum equations are given by:

∇ · u = 0

∂u

∂t
+ ∇ · (uu) −∇ · (ν∇u) = −∇p

• The non-linearity in the convection term (∇ · (uu)) is handled using an iterative solution

technique, where

∇ · (uu) ≈ ∇ · (uo
u

n)

where u
o is the currently available solution and u

n is the new solution. The algorithm cycles

until uo = u
n.

• There is no pressure equation, but the continuity equation imposes a scalar constraint on

the momentum equation (since ∇ · u is a scalar).

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 52

The PISO algorithm: The idea behind the algorithm (2/7)
(Acknowledgements to Professor Hrvoje Jasak)

• The idea of PISO is as follows:

− Pressure-velocity systems contain two complex coupling terms:

∗ Non-linear convection term, containing u-u coupling.

∗ Linear pressure-velocity coupling.

− On low Courant numbers (small time-step), the pressure-velocity coupling is much

stronger than the non-linear coupling.

− It is therefore possible to repeat a number of pressure correctors without updating

the discretization of the momentum equation (without updating u
o).

− In such a setup, the first pressure corrector will create a conservative velocity field,

while the second and following will establish the pressure distribution.

• Since multiple pressure correctors are used with a single momentum equation, it is not

necessary to under-relax neither the pressure nor the velocity.

• On the negative side, the derivation of PISO is based on the assumption that the momentum

discretization may be safely frozen through a series of pressure correctors, which is true

only at small time-steps. Experience also shows that the PISO algorithm is more sensitive

to mesh quality than the SIMPLE algorithm.

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 53

The PISO algorithm: Derivation of the pressure equation (3/7)
(Acknowledgements to Professor Hrvoje Jasak)

• As previously mentioned, there is no pressure equation for incompressible flow, so we use

the continuity and momentum equations to derive a pressure equation.

• Start by discretizing the momentum equation, keeping the pressure gradient in its original

form:

au

PuP +
∑

N

au

NuN = r −∇p

• Introduce the H(u) operator:

H(u) = r −
∑

N

au

NuN

so that:

au

PuP = H(u) −∇p

uP = (au

P)−1(H(u) −∇p)

• Substitute this in the incompressible continuity equation (∇ · u = 0) to get a pressure equa-

tion for incompressible flow:

∇ ·
[

(au

P)−1∇p
]

= ∇ ·
[

(au

P)−1
H(u)

]

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 54

The PISO algorithm: Sequence of operations (4/7)

(Acknowledgements to Professor Hrvoje Jasak)

• The following description corresponds to the operations at each time step.

• Use the conservative fluxes, phi, derived from the previous time step, to discretize the

momentum equation. Now, phi represents the ’old’ velocity, uo, in the convective term.

fvVectorMatrix UEqn
(

fvm::ddt(U)
+ fvm::div(phi, U)
- fvm::laplacian(nu, U)

);

• Solve the momentum equations using the pressure from the previous time step.

solve(UEqn == -fvc::grad(p));

This is the momentum predictor step.

• Wewill re-use UEqn later, which is the reason not to do both these steps as a single operation

solve(fvm::ddt(U)+fvm::div(phi, U)-fvm::laplacian(nu, U)==-fvc::grad(p));

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 55

The PISO algorithm: Sequence of operations (5/7)
(Acknowledgements to Professor Hrvoje Jasak)

• Loop the pressure-corrector step a fixed number of times (nCorr):

- Store rUA*UEqn.H() (corresponding to (au

P)−1
H(u)) in the U field, representing the

velocity solution without the pressure gradient. Calculate interpolated face fluxes

from the approximate velocity field (corrected to be globally conservative so that

there is a solution to the pressure equation) to be used in the fvc::div operator.

- Loop the non-orthogonal corrector step a fixed number of times (nNonOrthCorr):

* Calculate the new pressure:

fvScalarMatrix pEqn (fvm::laplacian(rUA, p) == fvc::div(phi));
pEqn.setReference(pRefCell, pRefValue);
pEqn.solve();
where rUA corresponds to (au

P)−1.

* Correct finally phi for the next pressure-corrector step (see also next slide):

if (nonOrth == nNonOrthCorr){ phi -= pEqn.flux(); }

- Calculate and write out the continuity error.

- Correct the approximate velocity field using the corrected pressure gradient.

• Do the next pressure-corrector step.

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 56

The PISO algorithm: Conservative face fluxes (6/7)
(Acknowledgements to Professor Hrvoje Jasak)

• Here we derive the conservative face fluxes used in pEqn.flux() in the previous slide.

• Discretize the continuity equation:

∇ · u =
∑

f

sf · u =
∑

f

F

where F is the face flux, F = sf · u.

• Substitute the expression for the velocity in ’PISO slide (3/7)’, yielding

F = −(au

P)−1
sf · ∇p + (au

P)−1
sf · H(u)

• A part of the above appears during the discretization of the pressure Laplacian, for each

face:

(au

P)−1
sf · ∇p = (au

P)−1
|sf |

|d|
(pN − pP) = aP

N(pN − pP)

where |d| is the distance between the owner and neighbour cell centers, and aP
N = (au

P)−1 |sf |

|d|

is the off-diagonal matrix coefficient in the pressure Laplacian. For the fluxes to be fully

conservative, they must be completely consistent with the assembly of the pressure equation

(e.g. non-orthogonal correction).

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 57

The PISO algorithm: Rhie & Chow interpolation (7/7)

(Acknowledgements to (soon Dr.) Fabian Peng-Kärrholm and Professor Hrvoje Jasak)

• When using a colocated FVM formulation it is necessary to use a special interpolation to

avoid unphysical pressure oscillations.

• OpenFOAM uses an approach ’in the spirit of Rhie & Chow’, but it is not obvious how this

is done. Fabian presents a discussion on this in his PhD thesis, and here is the summary of

the important points:

− In the explicit source term fvc::div(phi) of the pressure equation, phi does not

include any effect of the pressure.

− rUA does not include any effect of pressure when solving the pressure equation and

finally correcting the velocity.

− The Laplacian term, fvm::laplacian(rUA, p), of the pressure equation uses the

value of the gradient of p on the cell faces. The gradient is calculated using neigh-

bouring cells, and not neighbouring faces.

− fvc::grad(p) is calculated from the cell face values of the pressure.

• See Rhie and Chow in OpenFOAM, by Fabian Peng Kärrholm at the course homepage for a

detailed description of the PISO algorithm and Rhie and Chow in OpenFOAM.

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 58

A look inside icoFoam, write statements

• At the end of icoFoam there are some write statements:

runTime.write();

Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
<< nl << endl;

• write() makes sure that all variables that were defined as an IOobject with

IOobject::AUTO_WRITE are written to the time directory accoring to the settings in the

controlDict dictionary.

• elapsedCpuTime() is the elapsed CPU time.

• elapsedClockTime() is the elapsed wall clock time.

Håkan Nilsson, Chalmers / Applied Mechanics / Fluid Dynamics 59

A look inside icoFoam, summary of the member functions

• Some of the member functions used in icoFoam are described below. The descriptions are

taken from the classes of each object that was used when calling the functions.

A(): Return the central coefficient of an fvVectorMatrix.
H(): Return the H operation source of an fvVectorMatrix.
Sf(): Return cell face area vectors of an fvMesh.
flux(): Return the face-flux field from an fvScalarMatrix
correctBoundaryConditions(): Correct boundary field of a volVectorField.

• Find the descriptions by identifying the object type (class) and then search the OpenFOAM

Doxygen at: http://foam.sourceforge.net/doc/Doxygen/html/ (linked to from

www.openfoam.org).

• You can also find the Doxygen documentation by doing:

mozilla file://$WM_PROJECT_DIR/doc/Doxygen/html/index.html
Unfortunately, the search functionality only works when running mozilla through a php

server. However, the local Doxygen documentation was compiled for the current 1.5.x
version, while the one at www.openfoam.org corresponds to the 1.5 version.

• See the presentation by Martin Beaudoin at the 2007 course, on how to adapt the Doxygen

documentation, and include your own development.

