Eysteinn Helgason

Tutorial: Point-wise deformation of mesh patches

Point-wise deformation of mesh patches

Why?

- Easily change shape of an object.
- Can be used for shape optimization.
- Active flow control with icoDyMFOAM solver.

What will be shown in this tutorial:

- How to create a library that enables point-wise deformation.
- Control the shape of a patch with a function.
- Implement periodic patch shape deformation.
- Use point-wise deformation on a squared cylinder.

Extract the library and case file:

• tar -xvf EH_PatchDeform.tar.gz

Creating the library (1/2)

- Start by finding something that is close to what you want. \$FOAM_SRC/fvMotionSolver/pointPatchFields/derived/angularOscill.../ The angunarOscillatingVelocity rotates patches around a defined axis.
- Copy it to your run directory

cp -r \$FOAM_SRC/fvMotionSolver/pointPatchFields/derived/angularOscill... \$FOAM_RUN/

• Change filename, class name and function names:

sed -e 's/angularOscillating/libMyPolynom/g' \
libMyPolynomVelocityPointPatchVectorField.C > tmp.C
mv tmp.C libMyPolynomVelocityPointPatchVectorField.C
sed -e 's/angularOscillating/libMyPolynom/g' \
libMyPolynomVelocityPointPatchVectorField.H > tmp.H
mv tmp.H libMyPolynomVelocityPointPatchVectorField.H

- Edit Make/file to only include libMyPolynomVelocityPointPatchVectorField.C and change the name of the library to
 - LIB = \$(FOAM_USER_LIBBIN)/libfvMotionSolvers

Creating the library (2/2)

- Edit Make/options and add -I\$FOAM_SRC/fvMotionSolver/lnInclude to EXE_INC
- Quick look at the input variables that control the deformation. They are defined in the first time step in the case folder.
 - vi 0/pointMotionU

Now on to the library: cd ../libMyPolynomVelocity

• The input variables are initialized in libMyPolynomVelocityPointPatchVector-Field.H

vi libMyPolynomVelocityPointPatchVectorField.H

- \bullet The deformation is calculated and set in libMyPolynomVelocityPointPatchVectorField.C
 - vi libMyPolynomVelocityPointPatchVectorField.C
- After looking at the constructor and the updateCoeffs() function Close and compile the library

wmake libso

The case

Dimensions of the cylinder are length 20 cm, width 30 cm and height 10 cm.

- Lets start by running the case, it takes a few minutes and in the meantime look at the case files icoDyMFoam > log &
- To be able to use solvers that move the mesh we need a dinamicMeshDict in the constant folder. Controls mesh manipulation.

vi constant/dynamicMeshDict

- OpenFOAM needs to be told about the new library, that is done by adding libs ("libMyPolynomVelocity.so"); at the bottom of system/controlDict
- Lets now look again at the <code>0/pointMotionU</code>. The constants set in CubeY and CubeYMinus describe the shape of the plane that the patch will be deformed to. $z = X2 \cdot x^2 + X1 \cdot x + Y2 \cdot y^2 + Y1 \cdot y + Cconst$
- The deformation takes 0.2 seconds in both cases but for the CubeY it is periodic and returns to origin in another 0.2 sec.
- Run paraFoam and check the results.

Eysteinn Helgason

Results

Flow after 2.0 sec:

Thank you!

Questions?