
6-DOF VOF-solver without Damping in

OpenFOAM

Erik Ekedahl

February 15, 2009

Abstract

Implementation of a Volume of Fluid solver coupled with mesh mo-
tion in six degrees of freedom. A set up with a cubical box submerged
in a calm surface was studied in order to determine the stability of the
scheme. A description of the algorithm and the code as well as a diss-
cusion on the result and recommendations for further improvements
are included.

1

Contents

1 Introduction 3

2 Theoretical preamble 3
2.1 Volume of Fluid Method 3
2.2 Under-relaxation . 3
2.3 Degrees of Freedom, Forces and Moments 4
2.4 Rotation and Translation 4

3 Moving Mesh and Diffusion 5
3.1 Mesh Deformation . 6

4 Code 6
4.1 Algorithm . 7
4.2 Implementation . 7
4.3 Dictionaries . 8

5 Compile and Use 9
5.1 Possible Alterations . 10

6 Results 10
6.1 Mesh . 10
6.2 Boundary Conditions . 11
6.3 Initial Values . 11
6.4 Case A: A Calm Surface 12
6.5 Case B: A Coarse mesh 12
6.6 Case C: A Fine mesh . 13

7 Discussion 14
7.1 Divergence . 15
7.2 Future Work and Improvements 17

2

1 Introduction

In many engineering problems it is interesting to study the fluid-solid
interaction. Considering marine applications where for example a ship
is moving at a given velocity. This sort of simulation will already,
without mesh motion, cause the surface to break and spray close to
the hull. Adding mesh motion to this not only requires more computer
power but also adds more complexity to the surface reconstructions.
Resolving these issues give way to studies of ship induced waves and
more.

This chapter covers the implementation of a six-DoF solver to cou-
ple with interDyMFoam. Here a floating box is considered as a sim-
plification of more complex structures. The focus of this first study of
a Volume of Fluid solver coupled with mesh motion in six degrees of
freedom is to present some simple basic cases.

Case A : leaving the water surface completely undisturbed and leav-
ing the box to float. Here the water surface and the horisontal
plane cutting through the center of gravity are aligned.

Case B : a wave is used to set the box moving.

Case C : same set up as in case B but with a finer mesh.

2 Theoretical preamble

2.1 Volume of Fluid Method

The Volume of Fluid method (VoF) is a two-phase surface compression
method that solves the Navier-Stokes equations. In the VoF-method
the two phases are considered as a single phase with a volume fraction
between 0 and 1, as described in (??).

The interface is not a sharp surface but rather a region where fur-
ther refinements are made than in the regions with either γ = 0 or
γ = 1, this makes the method efficient. The velocity field is estimated
from the previous values and a PISO algorithm is used to solve an ex-
tra transport equation for the volume fraction after which the velocity
field is updated. [gui()]

2.2 Under-relaxation

Under-relaxation is an efficient way to stabilize numerical schemes and
improving convergence. By controlling to what extent the solver uses
the values previous calculated to determine the new ones. An under
relaxation factor of 0.7 can be described mathematically, let α be the
under-relaxation factor, then

φnew = αφnew + (1− α)φold (1)

where φold is the old value and φnew is the new value just calculated
in the solver. [R.M. Barron(2003)]

3

2.3 Degrees of Freedom, Forces and Moments

The term six degrees of freedom (6-DoF) refers to how the movement of
a body is limited, having all six degrees of freedom means that the body
can translate and rotate along all three axises in a three dimensional
system. Figure 1 shows the possible translations and rotations in three
dimensional space. When solving the Navier-Stokes Equations and the

ls

Figure 1: Axises describing the 6 degrees of freedom

continuity equation for a flow it results in forces and these can be
calculated by integrating over the body, as in equations (2) and (3)

F =
∫

S

F ext + F flow (2)

M =
∫

S

M ext + Mflow (3)

Where F is the total force, here the buoyancy force or pressure force
and the viscous forces and M is the total moment around the mass
center due to pressure and viscous forces. F ext is here only the gravity
since no other external forces are considered. [Roozbeh Panahi(2006)]

2.4 Rotation and Translation

From the forces, extracted as above, the velocity and the displacement
distance for one time step is calculated. It is here necessary to use
the accumulated distances. This is because each time step has a mesh
updating function that resets the mesh, though the calculations with
flux and other quantities are made according to the moved mesh. Using
two objects, quaternion and septernion that are objects that can store
a translation or rotation and when calling return a tensor for rotation
or a vector for translation. An object of the class septernion consists
of a vector and a quaternion. The theoretical focus here will be on the
quaternion which is the object handling the rotation.

A quaternion is a mathematical object, a vector in four-dimensional
vector space, written as a linear combination of the basis elements

4

{1, i, j, k} as a1 + bi+ cj+dk, where a, b,c and d are real numbers and
i2 = j2 = k2 = ijk = −1 as found by Hamilton. Here a is called the
scalar part and bi+ cj + dk is called the vector part. The vector part
of the quaternion can be identified to be the same as an element of R3

vector space.
In OpenFOAM an object of the quaternion class consists of a vector

and a scalar - the angle of rotation. A quaternion can be constructed
in different ways, in this work is has been done by specifying the three
Euler angles. This means explicitly that one creates three quaternions,
one for each angle in the three directions and multiply them together as
qx∗qy∗qz. The conversion between the Euler angles and the quaternion
is described mathematically as follows

w = c1c2c3 − s1s2s3 vx = s1s2c3 + c1c2s3

vy = s1c2c3 + c1s2s3 vz = c1s2c3 − s1c2s3
c1 = cos(roty) c2 = cos(rotz) c3 = cos(rotx)
s1 = sin(roty) s2 = sin(rotz) s3 = sin(rotx)

where the w is the resulting angle for the quaternion and vi the vector
and roti is the rotation around that axis, i = x, y, z. The conversion
from a quaternion back to a rotation vector in R3 is described below.

w2 =
√
w x2 =

√
vx

y2 =
√
vy z2 =

√
vz

txy = 2 ∗ vx ∗ vy twz = 2 ∗ w ∗ vz

txz = 2 ∗ vx ∗ vz twy = 2 ∗ w ∗ vy

tyz = 2 ∗ vy ∗ vz twx = 2 ∗ w ∗ vx w2 + x2 − y2 − z2 txy − twz txz + twy

txy + twz w2 − x2 + y2 − z2 tyz − twx

txz − twy tyz + twx w2 − x2 − y2 + z2

These two mathematical maps, first from R3 to the four dimensional
vector space of quaternions and then in the opposite direction describe
how the implementation is made in OpenFOAM. It can be added to
the FOAMAPP/test/quaternion/quaternionTest.C with the following
lines:

//Euler to quaternion:
quaternion q(angle_x,angle_y,angle_z);
//Quaternion to rotation
tensor rotation = q.R();

3 Moving Mesh and Diffusion

In a larger number of application it is interesting to examine the in-
teraction between a solid and one or more fluids. To accomplish this
it is necessary to move parts of the mesh and for that purpose there
are a number of methods, see [Hrvoje Jasak(2007)]. The one here con-
sidered is mesh deformation, where the cells in the mesh are deformed
(stretched or compressed) due to the motion of a part of the mesh.

5

3.1 Mesh Deformation

Mesh deformation can mathematically be considered as a map between
the domain D, which represents the configuration at a certain time
t with a boundary B, and D’ ∆t times later. Now it would only be
interesting to consider a very small subset of all the possible maps that
fulfill this requirement, namely the ones that will result in a valid mesh
in domain D’ [Hrvoje Jasak(2007)]. Consider figure 2 which shows the
mesh in the xy-pane at the initial set up. Already here the mesh shows
some signs of low quality. This is compared to the mesh in figure 3
which shows how many cells have been skewed severely.

Figure 2: the xy-plane at time 0 Figure 3: the xy-plane at time 0

4 Code

The idea is to move the points on the box and the cells neighbouring
it by describing them explicitly to the pointDisplacement and cellD-
isplacement fields, using the ==-operator at each timestep of the
solver. This is implemented in the file krafter.H. The ==-operator
assigns a field of vectors describing the accumulated displacement up
to that time step. This means that the diffusion algorithms described
in [Moradnia(2007)] in the mesh can be used. This is important as it is
not possible to move only a few points in the mesh without destroying
the shape of the cells, the neighbouring points needs to be moved as
well, this is done by the motionFvSolvers by a diffusion algorithm.

The mesh.update() that follows right after the implementation of
the movements resets the mesh and it is therefore crucial to assign
the accumulated displacement at each step. This is because nothing is
prescribed to the cellDisplacement and pointDisplacement dictionaries
in the Time-directory and the manipulation is done explicitly during
each time step.

6

4.1 Algorithm

The following algorithm describes the extraction of the forces and the
implmentation of the mesh moving scheme.

while Time is running do
Extract forces and moments from pressure, buoyancy.
Extract forces and moments from viscous effects.
Divide by mass for forces and inertia for momentum.
Extract the acceleration by multiplication of the real time interval.
Reset and move center of gravity.
Translate patch to origo.
Rotate in accordance to momentum.
Translate back to origo.
Translate according to forces.

end while

4.2 Implementation

There are four files added to the original version of interDyMFoam in
OpenFOAM-1.5: initializeForceBalance.H which initializes the vari-
ables and reads the motion fields, readForceBalanceControls.H which
reads from the forceFoamDictionary, krafter.H which calculates the
forces and moments and moves the mesh and finally pEqnGravity.H
which reconstructs the pressure. In the file krafter.H one finds the
implementation of the forces and moments and the extraction of the
displacement by translation and rotation and finally the assignment of
these displacements to the mesh.

The forces are calculated in krafter.H as follows: the buoyancy force
from the pressure is summed up for the patch and then multiplied by
the area vectors of the patch resulting a pressure force with a given
direction, line 63 - line 83 . For the moments the center of gravity
CgCenter, is subtracted from the position of the points on the patch
so that the moment is about the center of gravity rather then just
around origo, if the patch is not situated there, line 89 - line 109. The
gravity force is the product of the mass and the vector representing the
magnitude and direction of the gravity acceleration, line 112. Note that
the patch is built from faces which are built from points, cells concerned
are the ones that are neighbouring the patch and has one face that is
a boundary face of the same. The Sf()-function in the extraction of
the pressure forces returns the area vectors for the faces, Cf() returns
the face centers. The viscous force and moment are extracted from
the velocity field where magSf() is used to bring out cell face area.
These three functions are called from fvMesh which is the base class
for the dynamicFvMesh which is the type of mesh used in simulations
with interDyMFoam. The forces and moments are added toghter and
later called mometStatic and forceStatic in krafter.H. From these the
accumulated displacement and angle is calculated.

At the initialization the original positions of the points and cells are
extracted and assigned to the fields tempPoint and tempCell, line 167
in initializeForceBalance.H. First copying these to temporary fields on

7

which the rotation and transformation will be performed, line 203 - line
226 The temporary field is the translated to the origo by subtraction
with the center of gravity and using the conversion from quaternion
to a rotational matrix given in (4). This produces a new temporary
Field. The field is then translated back to its original position. This
field is then translated by adding a vector to its position and then the
original field is subtracted from the one obtained after translation to
extract the displacement. Last the center of gravity is translated to its
new position

4.3 Dictionaries

Needed apart from the directories used by interDyMFoam are the
/constant/forceFoamDict and /0/cellDisplacement and /0/pointDis-
placement dictionaries. The forceFoamDict is appended below and
will be explained hereafter.

The forceBalanceEnabled is a Boolean that will turn the forces and
movements on or off. M is the mass of the patch, this has to be
calculated by hand at the moment, the same holds for inertia which is
the moments of inertia for the patch. Here accelLim is a scalar that is
used to limit the movement. The acceleration due to gravity g is set
by a vector and a scalar. The center of gravity is assigned in the form
of a position vector as CgCenter. At last the name of the patch which
should be possible to move is defined.

forceBalance
{
forceBalanceEnabled yes;
}

/* -- */

// Mass of the moving part
M M [1 0 0 0 0 0 0] 108000;

// Mass of the moving part
inertia inertia [1 2 0 0 0 0 0] 648000;

// Limit the maximum acceleration on
// the system (Bandwidth limitation)
accelLim accelLim [0 1 -2 0 0 0 0] 1.0e-2;

// Acceleration due to gravity
g g [0 1 -2 0 0 0 0] 9.81;

// Direction vector of the acceleration due to gravity
gVector (0 0 -1);

// Direction vector of the acceleration due to gravity
CgCenter (0 0 0);

8

/* -- */

motionPatches
(
cube_region0
);

All the the entries in point- and cellDiscplacement was set to have
the Dirichlet boundary condition by

type fixedValue;
value uniform (0 0 0);

5 Compile and Use

The solver and all the required files to compile the solver in 1.5 or 1.5.x
is included, extract the archive by:

tar -xzvf my6DOFFOAM.tar.gz

cd my6DOFFoam

wmake the solver

wmake

The case folder consists of a complete set up for a floating cubical box,
extract the caseby:

tar -xzvf kubtest.tar.gz

run the case with the command:

my6DOFFoam

To change the mesh, extract the mesh archive and edit the blockMesh-
Dict, run

blockMesh

and edit the system/snappyHexMeshDict. run

snappyHexMesh

Copy the files from the /2-directory in the mesh folder to the constant
folder in the case folder.

9

5.1 Possible Alterations

There are a few parameters that are known to have an impact on the
performance of the system. First, different settings with the initial
configuration of the water can be examined. In system/setFieldsDict
there are two boxToCell regions and the latter of the two can be
changed by changing the size of its bounding box. This will influ-
ence directly how the box moves due to external forces and moments.
In constant/forceFoamDict : the gravity will not influence the rotation,
changing the weight of the box will define how much the box is sub-
merged. Secondly, the accelLim can be set to limit the displacement.
The third parameter which can be changed is the under-relaxation fac-
tor, see (1) which is found in the system/fvSolvers file at the very end.
Adding to these possible alterations the mesh. The mesh is appended
and can be refined or altered in different ways. First Using a finer mesh
will make it the simulation run slower and it will also be more assailable
to displacement. In the mesh folder in system/snappyHexMeshDict the
parameters for the snappyHexMesh is set. Setting the level for the sur-
face refinement differently will change the mesh structure close to the
box.

6 Results

6.1 Mesh

A mesh was generated in snappyHexMesh, first using blockMesh to cre-
ate a background mesh with dimensions 40x40x40 meters and snap-
pyHexMesh placed a box as a searchablesurface with the dimension
6x6x6meters in the center of the domain, depicted in figure 4. The
snappyHexMesh utility created the box without any refinement box in
order to keep the cell size fairly large. Since a small cell will suffer
more from skewness given a certain displacement, a larger cell will be
better of. Case A,B:

Number of cells of each type:
hexahedra: 85552
polyhedra: 5679

Case C:

Number of cells of each type:
hexahedra: 510272
polyhedra: 0

Using a VOF-methods it is important to have hexagonal cells for the
quality of the solution. The polyhedral cells are boundary cells and
thus closer to the box which causes the iso-surface to look strange in
a region close to the box. How much this actually affects the quality
of the solution is not clear.

10

Figure 4: The domain and the surface of the water.The water fills the domain
from -20m to 0m along the z-axis

6.2 Boundary Conditions

For all the patches in p, pd and gamma the zeroGradient of Dirichlet
boundary condition was assigned. This is because all the patches are
considered solid walls. For U the box-patch was assigned the moving-
WallVelocity-Boundary Condition which accounts for the movement of
the fluid as well as for the movement of the box-patch to make sure
that these there is no flux into the box. If not using this boundary
condition, the solver will interpret this as if the wall is not moving and
let the flux pass to positions where there actually is a box. All the
other patches in U are given the boundary condition slip, which when
the base patch is patch works as free slip with no flow in the direction
normal to the patch this will also reflect incoming waves. It can be
added that if using the wall base patch, the cells next to the wall will
be considered as wall as well, which can have effects on the flow. The
patches in the two new files added to use the solver, cellDisplacement
and pointDisplacement are all assigned fixedValue and uniform (0 0
0), this is also called the Neumann boundary condition.

6.3 Initial Values

In order to create some movements in the fluids an extra region of water
was placed on top of the one covering half the domain, see figure 10.
This was done by setting the second region in system/setFiledsDict to
raise a bit over the first over some part of the domain. The height of
this region will determine how box moves due to the forces the water
act on the box. The box is at time zero submerged to fifty percent in
the water with its vertical sides orthogonal to the water surface. The
under-relaxation factors were set to 0.7 for U and 0.5 for p and gamma.

11

6.4 Case A: A Calm Surface

Considering a box floating on perfectly still water there should be no
reason for the box to flip over. The only force applied to the box is the
gravity force which is homogeneous over the box. The horisontal plane
through the center of gravity is aligned with the water surface. In the
simulation the box was place in the water surface and the simulation
ran for 16 seconds until the solver diverged due to cell deformation.
The box had flipped over. In figure 5 the initial set up is pictured and
as can be seen the surface is perfectly calm. The solver has a tendency
to, due to numerical discrepancies and possibly a low mesh quality,
introduce disturbances. In figure 6 the solver starts moving the box
and in figure 7 it diverges. The reason for this behavior could be linked
to the mesh quality and the stability of the solver. This motivates some
sort of damping further than the one constructed for the acceleration
or another approach than mesh deformation.

Figure 5: Case A: initial condition,
non distrubed surface.

Figure 6: Case A: after 8 seconds,
the surface is disturbed from numeri-
cal discrepancies.

The pressure is visualized at the first 8 and at the last timestep 9.
Here a yz-plane through the cube with pressure glyphs shows the pres-
sure distribution. also the line through the cube at y = 0 is the surface
of the water.

6.5 Case B: A Coarse mesh

When setting the initial value to be a static wave or rather three meter
high region covering part of the domain as can be seen in figure 10 the
box is behaving as one could expect. It remains symmetric when the
wave passes, figure 11. In figure 12 one can see the box tilt due to the
forces from the water and start to tip over on the side in figure 13.
Further in figure 14 and in figure 15 the box starts rotating around the

12

Figure 7: Case A: the box and surface just before divergence, the numerical
scheme and the mesh is not accurate enough.

Figure 8: Case A: Slice in the yz-plane with pressure glyphs at the first time
step

Z-axis and tilts that much that the solver diverges due to skewed cells,
figure 22.

6.6 Case C: A Fine mesh

A mesh with cells, one fourth of the volume of the original ones, that
means cells with 0.25 m length were used for This simulation. The
result is similar but the resolution was better on the iso-surface. A
region with a height of three meters covering the the part of the domain
next to the box was set as the initial condition, see figure 18. The box
behaves in much the same way as in the case with fewer cells. In
figure 19 the wave has passed the box and just hit the opposite wall
where is reflects and in figure 20 it returns from the left again and hits

13

Figure 9: Case A: Slice in the yz-plane with pressure glyphs at the last time
step.

Figure 10: Case B: initial condition
where part of the surface one is ele-
vated.

Figure 11: Case B: the wave just
passes the box which is still stable

the box a third time. Here the box is already starting to tilt and rotate
and the forth time it hits, figure 21 where water covers part of the side
which is facing uppwards the solver again diverges.

7 Discussion

This sort of set up, using a cube that floats on water would be an
unstable system in any real world experimental set up as well, consid-
ering that half the cube is submerged in the water and the center of
gravity is right at the level of the surface. It describes though, how
the box moves according to the forces induced by the wave hitting it.

14

Figure 12: Case B: the box starts tilt-
ing a bit sue to the forces from the
wave

Figure 13: Case B: the box leans over
to the left

Figure 14: Case B: the box starts to
rotate

Figure 15: Case B: the box has now
rotated to a critical stage

Considering a case where there is no wave induced and the water sur-
face is perfectly still the box would be left balancing on the surface,
figure 5 shows the surface before the simulation starts. That the box
still flips over after some time and that the water close to the box is
behaving differently than expected in a real life experiment is still not
quite unexpected. With the errors involved in the method and the fact
that the mesh is quite coarse makes this quite plausible.

7.1 Divergence

The solver diverges after about 10 seconds for the case with the coarse
mesh. This is due a result of a deterioration in mesh quality which

15

Figure 16: Case A: Slice in the yz-plane with pressure glyphs at the first
time step

Figure 17: Case A: Slice in the yz-plane with pressure glyphs at the last
time step.

is caused by the moving patch. In paraFoam there is a filter called
mesh quality and when applying this with the setting hexagonal -
skew it shows that the cells close to the patch is severely deformed
in the last timestep. This could probably be helped by adding some
kind of damping or stabilization scheme to the solver. it would prob-
ably make it more unphysical but on the other hand, it seems to be
overreacting now to tilt over way to fast. Here, the type of spring
damping systems referred to in some literature, see [et. al.(2007)] and
[Hrvoje Jasak(2007)] could be used.

16

Figure 18: Case C: initial condition,
the static wave has a height of 3 me-
ters

Figure 19: Case C: the wave hits the
opposite side and the box is tilting

Figure 20: Case C: the wave hits again
for the third time, coming from the
left

Figure 21: Case C: wave hits the
fourth time and now sinks the box and
the solver diverges

7.2 Future Work and Improvements

Much work and refinement can be done to make this code more ac-
curate and more efficient both considering the mesh handling as well
as the VoF parameters like the under-relaxation factors that could be
optimized. One of the things that were considered was to have some
kind of spring damping system for both rotation and translation to
hinder the box to move more than the mesh allows before its quality
deteriorates. Further, here a mesh generated in snappyHexMesh was
used without a refinement box. Using the simpler blockMesh utility
would even offer larger cells close to the surface and therefore a more

17

Figure 22: The box from case B, just before divergence.

forgiving mesh. Since the displacement has to be related to the cell
size a move with small cells has a larger impact on the mesh quality
than if the mesh is coarse.

It would be possible to implement a function that could find the
center of gravity and the momentum of inertia for any considered body.
Assigning it by hand works well for very simple geometries but quickly
with complex structures it becomes very difficult.

18

References

[gui()] Best Practice Guidelines for Marine Applicaion of Computa-
tional Fluid Dynamics.

[R.M. Barron(2003)] Ali A salehi Neyshabouri R.M. Barron. Effects
of under-relaxation factors on turbulent flow simulations. Interna-
tional Journal For Numerical Methods in Fluids, (42), 2003.

[Roozbeh Panahi(2006)] Mohammad S. Seif Roozbeh Panahi,
Ebrahim Jahanbakhsh. Development of a vof-fractinal step solver
for floating body motion simulation. Applied ocean research, 28
(28):171–181, August 2006.

[Hrvoje Jasak(2007)] Zeljko Tukovic Hrvoje Jasak. Automatic mesh
motion for the unstructured finite volume method. Transactions of
FAMENA, 30(2), 2007.

[Moradnia(2007)] Pirooz Moradnia. A tutorial on how to use dynamic
mesh solver icodymfoam. PhD course in CFD with OpenSource
software, Fall 2007.

[et. al.(2007)] Pablo M. Carrica et. al. Ship motions using single-phase
level set with dynamic overset grids. Computers Fluids, (36):1415–
1433, 2007.

19

8 Isosurface in Paraview

In order to create an iso-surface along with parts of the mesh as solids
as used in the report one can use the filters included in paraview.
Start paraview by running the paraFoam command as usual in the
case folder.

• Check all the boxes for the patches in the object inspector for the
case you are running

• In the selection inspector tab, click on create selection and in the
ID’s roll down menu below choose blocks

• By checking the patch you would like to include (the floating box
in the report) the patch becomes highlighted

• In the filters menu pick the filter extract selection

– Click copy
– Click apply
– Choose solid in the roll down menu

• choose the case, top one, in the pipeline browser

• Choose the contour filter for the iso surface.

• Set gamma to 0.5

If you have any problem, remake and be sure to have the right filter
marked in the pipeline browser

20

