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Chapter 1

Introduction

1.1 Introductory Notes

Marine applications often call for computational fluid mechanics. Within the scope of this master

thesis a number of tools have been tested and some new created with the aim to gather a library

of applications and utilities that can be used in simulation and analysis of fluid solid interaction

type problems.

The link between design and the actual simulation is often a large time factor in Computational

Fluid Dynamics (CFD). From a CAD1 generated geometry, often in .igs2 format, it is necessary

to clean up the geometry to obtain a closed topology. Further, work includes meshing the

surface and domain around the object to finally set up the case using some CFD software. In the

OpenFOAM-1.5 library, an automatic hexagonal volume cell meshing utility is available. From

an .StL3 file, this utility, given a number of parameters, automatically creates a volume mesh of

dimensions specified by the user, around the .StL object.

Further, one of the big challenges in CFD today is the implementation of mesh motion in six

degrees of freedom, where translation and rotation is allowed in all three directions. That is where

the object is allowed to translate and rotate in all three directions, coupled with the simulation

of the flow. The applications are numerous where analysis of the fluid-solid interaction can be

useful. The study of automatic response systems and vessel induced waves are two. Here a solver

has been implemented that combines the Volume of Fluid -method (VoF) with translation and

rotation in a six degrees of freedom system.

1.1.1 Approach

The model which is central in this master thesis is based on a version of the simplified Navier-

Stokes equations which does not account for turbulence, heat transfer nor chemical reactions.
1Computer Aided Design
2Common format in CAD
3Geometry built from triangular elements
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Chapter 1. Introduction 2

The single phase simulations are performed with a transient solver for laminar, incompressible

flow of Newtonian fluids. The VoF-method for two fluid flows is a rewritten version of an existing

solver where parts of the mesh is moved in accordance to gravity, buoyancy and viscous forces.

Obviously this is a great simplification and needless to say - in most practical applications,

turbulence needs to be accounted for. Nevertheless it is still interesting to understand the

structure of the computation which is basically the same and in order to add more complexity,

a solid foundation is needed.

1.1.2 Objectives

This master thesis is a collaboration between a commercial enterprise, Epsilon, which supplies me

with expertise from the industry and on the other hand the IT-department at Uppsala University

where support on more theoretical subjects is given. In the last version, to date, of OpenFOAM

an automatic hex mesh generator is implemented. The aim is to test this utility to verify the

quality of the mesh and to implement a Volume of Fluid solver coupled with mesh movement in

six degrees of freedom.

1.1.3 Description of the work

The first weeks were spent on understanding the OpenFOAM library, the structure of the codes

and work with tutorials. Also much time was dedicated to reading papers and books to cover

the theory. The first task was to understand how to generate volume hex-meshes around an

objects imported from a CAD software. Work was done understanding what parameters were

needed to be altered in order to generate a mesh that would give sufficient accuracy without

using too many cells. This report sums up the work done on the automatic meshing scheme.

Three automatically generated meshes will be analyzed and presented. The latter part of the

time interval was used to generate code that would improve the VoF solver and allow for dynamic

mesh motion. Three cases where a cubic box is floating on water with movement possible in six

degrees of freedom are presented.

1.2 Open Source Field Operation and Manipulation

Open Source Field Operation and Manipulation (OpenFOAM) is a C++ library of modules for

building applications and utilities used in engineering. It is licenced under GNU license which

means that anyone can download, use and manipulate the code as one likes. It has a number of

tools that can be used to assemble solvers and utilities aimed at solving and analyzing continuous

mechanics problems. The code was under commercial license and owned by the company NABLA

up until 2005 when it was released as open source under the GNU license. While it is possible to

build solvers from scratch it is a far less time consuming approach to configure one of the existing

solvers to suit the problem one is trying to solve. Mainly the work has been with the InterFoam

and interDymFoam solvers, both VoF interface capturing solvers where the latter allows for mesh
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motion. The simulations with the cylinder has been made with icoFoam, a transient solver for

single-phase laminar flow of Newtonian fluids.

The aim was primarily to understand how to automatically mesh the volume of a domain and

to develop a code that could combine a VoF-solver with mesh motion in six degrees of freedom

to solve marine type problems.

A large part of the work in this master thesis has been dedicated to understand the code. This

master thesis has been running parallel with a course in OpenFOAM at Chalmers. Due to the

lack of documentation on how to use the code more time than expected was needed to learn how

to navigate it.

1.2.1 Structure

After covering some of the basic theory the numerical model of icoFoam and interFoam is de-

scribed in Chapter 2 in some detail. The snappyHexMesh utility is considered in Chapter 3 before

moving on to the results from the qualitative study of the mesh generated in snappyHexMesh,

later in that same chapter. Last, Chapter 4 the results from simulations with the 6-DoF-solver
4 are presented along with some comments on further work.

4Six degrees of freedom, refering to the motion of a rigid body in three-dimensional space.



Chapter 2

Governing Equations and

Numerics

2.1 Governing Equations

2.1.1 Single Phase Flow

The flow considered here is that of incompressible Newtonian fluids and thus can be described

by the following Navier-Stokes equations

∂U

∂t
+U · ∇U = −∇p+Re−1∇2U (2.1)

where U = U(x, y, z) is the velocity field, Re is the Reynolds number and p is the pressure.

The terms in (2.1) are, from the left: acceleration of the flow, the second term is the convective

acceleration, caused by a change of velocity over position, for example, close to a cylinder in a

flow field the velocity changes due to the change in the path of the flow . On the right hand

side first the pressure gradient is found, then viscosity. Under the assumption that the flow is

incompressible the continuity equation becomes

∇ ·U = 0 (2.2)

where U is the velocity field.

2.1.2 Two Phase Flow

This section outlines the interface capturing two phase metod governed by the Navier Stokes

equations. There are different ways of handling the two phases, either they are treated in two

equations which are matched at the interface or as here in one single equation using an indicator

4
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function γ.

γ =


1 if in the water

0 < γ < 1 in the region around the surface

0 if in the air

In this single field formulation, material properties and interfacial properties are accounted for

in the conservation equations. The continuity equation becomes as in (2.2). The momentum

equation becomes

∂ρU

∂t
+∇ · (ρUU) = −∇p+∇ · τ + ρf +

∫
S(t)

σκ′n′δ(x− x′)dS (2.3)

where the last term on the right side is a source term due to the surface tension. In a surface

capturing scheme like the VoF-method the shape is not known and this last term is rewritten

and approximated as σκ∇γ. This needs to be supplemented by the stress tensor

τ = µ(∇U +∇UT ) (2.4)

In the equations above, t is the time, τ is the stress tensor, µ is the kinematic viscosity, f is the

acceleration due to body forces (i.e. in the case gravity is the only force f = g). The last part

of (2.3) is due to the surface tension and this applies to the whole surface S(t). σ is the surface

tension coefficient, κ the curvature and n the normal of the interface.

This mathematical description of the flow of two fluids, both incompressible and with constant

viscosity includes surface tension but neglects mass and heat transfer. The idea is to write one

set of conservation equations which are discontinuous over the interface between the two fluids

with respect to the material properties and to the flow field. For the material properties (i.e

density and viscosity) on either side of the interface the Heaviside function is convenient.

H =

{
1 on the one side of the interface

0 on the other side of the interface

With the Heaviside function, this can be represented as a single field, here for the density, ρ

ρ(x, t) = ρwH(x, t) + ρa(1−H(x, t)) (2.5)

where x is the position vector, t is the time, ρa is the density for air and ρw is the density for

water.[1]

It can be noted that the interface is not a sharp surface but rather it is treated as a mixture

between the two fluids with respect to the cells near the surface. This can be described [1] by

using the indicator function (4.2.1) γ which obeys the transport equation in the form,

∂γ

∂t
+ (U · ∇)γ = 0. (2.6)
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Then, using this indicator function, the density ρ and the kinematic viscosity µ can be written

as

ρ = γρw + (1− γ)ρa (2.7)

µ = γµw + (1− γ)µa. (2.8)

Surface tension and other interfacial phenomena are represented by adding interface terms to

the governing equations.

In this scheme, developed by Henry Weller [1], one of the developers of OpenFOAM, the com-

pression of the interface is not achieved by a difference scheme but rather by adding an extra

term in the indicator function equation

∂γ

∂t
+∇ · (Uγ) +∇ · (U rγ(1− γ)) = 0. (2.9)

Here the extra term is the third, where U r is the velocity in the interface region. This term has

no significant effect in the domain outside the interface region. It is a safety device to restrict the

solution for γ to be bounded between zero and one. It should be pointed out that this description

is a rough outline for the mathematics behind the interFoam solver on which myInterDyMFoam

solver is built. There is no up-to-date report on the current implementation but the structure

described here is the one always referred to when referring to the mathematics behind interFoam

(e.g. on the OpenFOAM forum)[2].

2.2 Discretization

Spatial discretization of the domain. The domain is divided into cells and relations between

this set of cells is stored.

Governing equations discretization of the set of governing algebraic equations. These are

discretized to describe the problem in the discrete positions in time and space.

Temporal discretization of time with steps of dynamic size.

2.3 Spatial Discretization - Meshes in OpenFOAM

As the mesh quality is an important part of the numerical solution, OpenFOAM checks continu-

ously that a number of conditions are satisfied, otherwise the simulation will halt. OpenFOAM

works with three-dimensional polyhedral cells but here, since the VoF-method prefers cells to

be hexagonal, these will be in focus. Further these are considered as volume cells while the

polyhedral cells are used on the boundary. The discretization can be generalized as described by

figure 2.1. Here the spatial domain is divided into a number of cells and the temporal domain

into time steps ∆t. A cell is bounded by a set of faces, some faces of the cells will be faced inward

the domain and some are forming the boundaries of the same. Figure 2.2 shows two generalized

cells where S is the normal of the face and its magnitude is equal to the area of the face. P is
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Figure 2.1: discretization of the solution
domain.

Figure 2.2: P is the center of the cell of
interest, N the neighboring cell, and d the

distance vector.

the cell of interest and N is the neighboring cell, d is the vector from the center of P to the

center of N. [1] Further the cells are required to be [3]

Contiguous: the cells completely cover the domain and do not overlap,

Convex: the cells are convex and the cell center must be inside the cell,

Closed: both in geometrical sense (i.e. if face area vectors S are set to point outward their sum

should be zero and topological sense (i.e all the edges in a cell i used by two faces),

Orthogonal: i.e. the angle between the face area vector S and the center-to-center vector d

between to neighboring cells must always be less than 90 degrees.

In OpenFOAM the mesh are built from a number of objects. These are required to fulfill some

specifications and are defined as follows.

Points: two points, specified by a vector, can not have the exact same position.

Faces: faces are made up from a list of points and can be of two different types: internal,

connecting two cells or external, making up the boundary.

Cells: a cell is a list of, arbitrarily ordered, faces. The cells need must be contiguous thus cover

the whole domain, be convex, closed and orthogonal.

Boundary: the boundary is made up from a list of patches and each boundary must have a

specific boundary condition, it must be closed and must contain no internal faces.

Further, a patch is made up from a list of faces and given a name specified by the user. There

are a number of base type patches onto which more specific information can be added. Used in

this work is the wall boundary condition, where the cells next to the wall are considered as part

of the patch, used for the no-slip condition. The patch boundary condition is used for inlet and

slip walls.
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2.4 Governing Equation Discretization

After setting up the mesh points, the governing analytical equations need to be discretized and

solved at the points defined by the mesh. Consider a generalization of (2.1) as this representation

of the transport equation

∂ρΦ
∂t

+∇ · (ρUΦ) = ∇ · (Γ∇Φ)−∇p (2.10)

with Φ as a tensorial quantity, Γ diffusivity, ρ the density, U the velocity and p is the pressure.

(2.10) is the integrated over the control volumes V , or cells, defined by the mesh, as∫
V

∂ρΦ
∂t

+
∫

V

∇ · (ρUΦ) =
∫

V

∇ · (Γ∇Φ)−
∫

V

∇p (2.11)

Gauss’s theorem (2.13) makes it possible to work with values at the faces rather than with

the volumes and the values are interpolated from the cell centers to the face centers. The

discretization of the different parts of (2.11) are here described, leaving the first term for the

next subsection the second term. The convection term is treated as follows∫
V

∇ · (ρUΦ)dV =
∫

S

(ρUΦ) · dS ≈
∑
face

S · (ρUΦ) (2.12)

The Gauss theorem has the form ∫
V

∇ ·A · dV =
∫

S

AdS (2.13)

The diffusion term is discretized in a similar manner∫
V

∇ · (Γ∇Φ)dV =
∫

S

(Γ∇Φ) · dS ≈
∑
face

Γ(S · ∇Φ) (2.14)

Here the divergence term needs to be treated further and this is done by differencing as

S · ∇Φ = ∇⊥Φ ≈ ΦN − ΦP

|d|
(2.15)

where the ∇⊥ gives the orthogonal contribution, d is the vector between the center of the cell P

and the neighboring cell N , see figure 2.2. This works for orthogonal meshes, which is the type

used here. [1] The pressure term is discretized as∫
V

∇pdV ≈
∑
face

Sfp (2.16)

where Sf is the face area vector.
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2.4.1 Boundary Conditions

In order to solve the equations boundary conditions have to be specified. The two basic ones,

fixed value and zero gradient are the basis of other varieties. Here all the ones used in the

following sections are described.

2.4.2 Fixed Value

Also called Dirichlet boundary condition. A variable is assigned a specific value Σb at the

boundary [4]. For the no-slip boundaries the fixed value is set to zero in all three directions.

2.4.3 Slip

The slip boundary condition is set for the patches where it is desirable that the flow is passing

along the walls. In theory this works by letting the velocity be interpolated from the cells just

next to it where quantities normal to the wall are set to zero.

2.4.4 Zero Gradient

Or a specific case of the Neumann condition. The gradient normal to the boundary is set to

zero. [4]

2.4.5 Symmetry Plane

It is assumed that there is no flow over the symmetry boundary and thus the normal velocity

component at the symmetry plane is zero, φb · nsym = 0. More, there is no diffusion. Thus, the

normal gradients of the flow variables are zero at the symmetry plane, ∇φb · nsym = 0. [5]

2.5 Temporal Discretization

The two solvers that are treated in the next section are both transient. Thus, time needs to be

accounted for. Before moving on, the time derivative from (2.11) is treated as∫
V

∂ρΦ
∂t

dV ≈
ρn

P Φn
P − ρ

n−1
P Φn−1

P

∆t
VP (2.17)

where Φn = Φ(t+ ∆t) and Φn−1 = Φ(t). Integration of (2.11) in time gives (2.18)

∫ t+∆t

t

∫
V

∂ρΦ
∂t

dV +
∫

V

∇ · (ρUΦ)dV dt =
∫ t+∆t

t

∫
V

∇ · (Γ∇Φ)dV −
∫

V

∇pdV dt (2.18)
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where φ is the flux. The control volumes are assumed to be constant in time and a semi-

discretization can be formed by combining (2.12),(2.14), (2.17) and (2.16)

∫ t+∆t

t

ρn
P Φn

P − ρ
n−1
V Φn−1

P

∆t
VP +

∑
face

S · (ρUΦ)dt =
∫ t+∆t

t

∑
face

Γ(S · ∇Φ)−
∑
face

pSdt (2.19)

Two ways are used to treat the integral: an explicit method where care needs to be taken to the

Courant number and the implicit Euler method which is always stable. The two methods will

be discussed in the following sections. [1]

2.6 Numerical Approach

2.6.1 IcoFoam

IcoFoam is a transient, single phase, laminar flow solver for Newtonian fluids. It uses the explicit

discretization of (2.19) which then becomes using Φ = U ,

V ρ
Un −Un−1

∆t
+

∑
face

S · (ρUn−1) =
∑
face

Γ(S · ∇Un−1)−
∑
face

pS (2.20)

The user specifies the pressure p and the velocity U as well as the kinematic viscosity along with

the schemes to be used by the solver. The procedure is explained below in steps.

The equation (2.20) and the continuity equation (2.2) is solved for Un and p using the PISO

algorithm [6].

2.6.2 myInterDyMFOAM

The present implementation is an addition to the original code which makes it possible to adjust

the mesh motion during simulation.

The myinterDyMFOAM solver in OpenFOAM is using an interface capturing, VoF-method.

Here the two phases are considered to make up one single fluid as a mixture of the two. The

control volumes or the cells are then assigned a value between 0 and 1. The cells at some distance

from the surface will be likely to have either of the extremes. A pressure-correction equation,

obtained from the mass and momentum equations is used to correct the velocity components

which are first assigned a value by estimation from the momentum equation. It accounts for

mesh motion and if needed, turbulence by specifying a turbulence model. [7]

myinterDyMFoam solver can be described by the following steps

• The forces are calculated and the mesh moved, see 4.2.1.

• The mesh is updated.
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• The gravity volume and the surface fields are calculated.

• The pressure and fluxes are corrected.

• The Courant number is updated for the new mesh.

• The γ-sub cycle where γ is explicitly solved for using the MULES limiter scheme. The

flows are first calculated and then MULES solves it explicitly

• The U equation is set as in icoFoam but with the addition of the Laplacian of the velocity

and the laminar kinematic viscosity.

• The PISO-loop for pressure pd, where pd = p− g ∗ z ∗ ρ to make the boundary conditions

simpler to implement in cases where gravity is used. Apart from this the process is the

same as the implementation in icoFoam.

• Reconstruct p once more from gravity, from the equation above.

What also has to be added is that for the moving object a special boundary condition has to be

prescribed to the moving wall of the object to make sure that there is no flow through it. Stated

differently, wall normal component (to the wall) of the velocity and the mesh motion flux need

to cancel out.



Chapter 3

Automatic Mesh Generation

3.1 Flow around a Cylinder with Vortex Shedding

The study of flow around cylinders has been, experimentally at least, investigated in the last 100

years. It offers almost all of the dynamic phenomena usually of interest such as turbulent and

laminar flow, boundary layer separation, unsteady lift and drag and vortices. Essentially these

all depend on the Reynolds number(3.1). The Strouhal number, used here to study the flow and

compare with previous results, can be calculated from the flow, see equation 3.2. [8]

Re =
|U∞|L
µ

(3.1)

St =
fL

U∞
(3.2)

here U∞ is the mean velocity of the flow, f is the shedding frequency of vortices, L is the

characteristic length, here the diameter of the cylinder and µ the kinematic viscosity [9].

At low Reynolds numbers (< 10) the flow is determined, largely, by viscous effects. It is then

said to be stationary. With increasing Reynolds number the cylinder starts shedding unsteady

wakes. This phenomenon, in the region downstream of the cylinder is known as the Bernard

- Von Karman vortex street [10]. The flow past the cylinder becomes unsteady and shedding

wakes at a Reynolds number of around 50. The flow is behaving as mostly two-dimensional up

to a Reynolds number of around 180. [9]

The difference of simulating two-dimensional and three-dimensional flow in problematized in [8],

where the three-dimensional simulations well agree with the experimental data but shows more

dynamic effects than the two-dimensional flow at the same Reynolds number. The drag coefficient

Cd can be extracted from the following equation

Fd =
1
2
ρU2
∞CdA (3.3)

where Fd is the drag force, U∞ is the mean velocity and A is the reference area. Numerically

this is done by calculating the forces and using the values specified by the user as input data.

12
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3.2 SnappyHexMesh

A new feature for the version 1.5 of OpenFOAM is a automatic hex mesh utility, snappyHexMesh,

which given a background mesh generated in blockMesh, and an StL file creates a volume mesh

around the StL object in 3D. One of the main goals with the master thesis is to implement a

utility that can take a file generated in a CAD software and generate a mesh in a domain around

it. After some time it became clear that the requirement that the geometry is closed, in other

words that the work done in the CAD file is accurate enough, was too hard to automate. Some

preprocessing in a mesh program, ANSA for example, has to be done and the file has to be

exported as .StL.

The snappyHexMesh-utility requires the following:

• An StL file where the object is built by triangles, represented by the three point position

vectors and a surface normal vector, either in binary or in ASCII.

• A background mesh. This limits the computational domain and the quality of the initial

mesh is a measure of the final quality of the mesh after running snappyHexMesh.

• A dictionary that contains details on how to mesh the domain with the StL object.

Important to note is that if the StL object is detailed and a high level of refinement is required

on the surface, then the background mesh needs to be finer or the refinement box larger. This of

course requires more cells and the amount of cells grow rapidly in three dimensions. In fact, if

the background mesh is too coarse then cell splitting effects like in figure 3.1 can be seen. These

are a result of the cell splitting scheme that allows the cells to grow to meet the background

mesh.

3.3 Results

When the flow past a cylinder reaches a critical state, vortex shedding occurs due to the instability

of the wake downstream of the cylinder [11]. This type of flow, simple as it is to set up, has

been investigated both experimentally and numerically for decades. An extensive database of

information on the subject and numerous articles have been written describing the problem.

The aim here is to establish whether the mesh, generated as described in the previous section,

is of good quality. A number of simulations are performed on this particular problem with

differently refined meshes in order to establish the mesh quality as good or bad. The solver is a

transient solver for laminar single-phase flow of Newtonian fluids.

Here the correlation between the Reynolds number and the drag coefficient Cd will be compared

with exiting data and later discussed in detail. Three simulations with different mesh quality

have been performed at Re = 100 and even though the visual result is convincing, Cd is not as

expected for the mesh with the lower number of cells.
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3.3.1 Computational Domain

The intention of this investigation is to examine the quality of the mesh generated by the snappy-

HexMesh-utility by comparing to existing data in [9], [10],[8] and [11]. The domain is bounded

by the points in (−22,−6, 0) and (12, 6, 3), at (0, 0, 0) a cylinder with the diameter 2 m is centered

and it extends through the domain in the z -direction. An additional two, more refined meshes

are also generated in order to compare with the first one and make sure that the quality of the

computation behaves as expected with a more refined mesh. One of the refined meshes contains

a refinement box around the cylinder extending downstream. The other also has a second re-

finement box around the cylinder, further refining the mesh close to the cylinder. Table 3.3.1

gives information on the details of the meshes, here the first column refers to the cell length at

the domain boundary.

Cell Length Nb. Hex cells Nb. polyhedral cells mesh

0.2m 332520 6780 A

0.2m 1083702 26225 B

0.4m 1139072 27656 C

The hexagonal cells are prefered for VoF-simulations and the polyhedral cells are needed for the

transition between the cylinder and the initial domain. The computational domain, close to the

cylinder for mesh A is depicted in figure 3.1. The fine cells close to the cylinder quickly expands

by means of splitting the larger cells surrounding the cylinder. It does not give a significant

deterioration of the quality in this kind of simulation when using icoFoam.

Figure 3.1: Mesh A: close to the cylinder, the cells are split up when the background mesh
meets the finer mesh on the cylinder
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3.3.2 Boundary Condition

In OpenFOAM the boundary conditions for the variables p and U , required by the icoFoam

solver, are specified in different files, and further it is set separately for the different patches.

For p, zeroGradient, explained in the previous section, has been used at all patches including

the cylinder. U is set to a fixed value at the inlet. The walls are set to slip condition and the

cylinder to no-slip [9] by specifying the fixed value zero at the patch. At the outlet the boundary

condition for U is set to zeroGradient, as recommended in the OpenFOAM user’s guide [3].

3.3.3 Mesh A

Initial velocity and velocity at the inlet is set to be 0.5 m/s (in the negative x-direction) giving

a Reynolds number of 20, see 3.1 when using the diameter 2m as characteristic length. µ, the

kinematic viscosity, is set to 0.010 m2/s. The mesh is shown in figure 3.1 and as can be seen the

mesh is refined just close to the cylinder, situated at the origin.

The simulation ran for 150 seconds on an intel Xenon 2gb memory, single processor, which

consumed approximately 64 hours to simulate the flow. In order to compare with existing data

the velocity profile is plotted for a number of positions in the flow field. In addition, streamlines

for the flow shows that the mesh is accurate enough to give results that are comparable. The

streamlines are produced by integrating for the stream function Φ over the y-axis. Consider

u =
∂Φ
∂y

, v = −∂Φ
∂x

(3.4)

where, u is the x-component of the velocity and v is the y-component. The boundary conditions

are, Φ(x,−6) = 0,Φ(x, 6) = U ∗ 6,∀x ∈ [−22, 12]. With the assumption ∇ · U = 0 the stream

function can be calculated from

Φ(x, y) =
∫ y

−6

u(x, s)ds (3.5)

which becomes, as the mesh is a discrete domain

Φ(i, j) = h

j∑
k=0

u(i, k), φ(i, 0) = 0,∀i = {1, . . .M}, j 5 N, (3.6)

where h is the length of the cells (0.2m, at the boundary of the box) and N the total number

of grid points on the Y-axis and M the total number on the X-axis. [10] These results can be

seen to compare well with the results in [10], [9] and [12] for the Strouhal number and visual

behaviour but the drag coefficient is off the charts and this is due to the numerical method used

to compute it which requires an extremely fine mesh. The fact that the bubbles behind the

cylinder goes from being symmetric at time 35 seconds and before, Figure 3.2 and becomes more

asymmetric along the x-axis, Figure 3.3 and that the bubble is shrinking and the flow become

more oscillatory, Figure 3.4 as the time increases.

Figure 3.5 shows the velocity profile along a line passing through the center of the cylinder.

Notice the sharp gradient of the top curve at y = 1 and y = 11. This is due to the boundary
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Figure 3.2: Mesh A: streamlines for the flow in after 35 s, showing the two bubbles quite
symmetric

Figure 3.3: Mesh A: after 79 s, the flow just starts to shed vortices.
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Figure 3.4: Mesh A: after 150 s the street of vortices can be seen downstream.

Figure 3.5: Mesh A: velocity at a line
through the domain x = 0m, and z = 3m,
top curve is v, bottom curve is u at 150

seconds.

Figure 3.6: Mesh A: velocity at a line
through the domain x = −1m, and z =
3m, top curve is v, bottom curve is u at
150 seconds. Just behind the cylinder the
velocities are zero and are changing fast

close to it.

condition but should not interfere with the results at the cylinder. The velocities are here

presented for different positions along a plane. In figure 3.5 the lower curve, u changes sign close

to the cylinder indicating that the field is behaving as expected [10]. Figures 3.6 to 3.10 show the

velocity profile for a number of positions along the x-axis. The flow becomes more homogenous

while moving further away from the cylinder. At x = −22, see figure 3.10 the velocity profile

indicates that a larger domain could have been used to capture more information. From rewriting

some utilities, it was possible to calculate the mean drag coefficient Cd. The output from the

utility used to calculate the mean drag coefficient is 3.47, 3.43 and 3.23 for Mesh A, B and C

respectivly which are very high values. It is found that the value of Cd is not very convincing.

It is about two and a half times the value given in [11], but as is stated in that article, it is
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Figure 3.7: Mesh A: velocity at a line
through the domain x = −2m, and z =
3m, top curve is v, bottom curve is u at

150 seconds.

Figure 3.8: Mesh A: velocity at a line
trough the domain x = −4m, and z = 3m,
top curve is v, bottom curve is u at 150

seconds.

Figure 3.9: Mesh A: velocity at a line
through the domain x = −9m, and z =
3m, top curve is v, bottom curve is v at
150 seconds. Here the u velocity is positive

relative the direction of the stream

Figure 3.10: Mesh A: velocity at a line
through the domain x = −21.5m, and
z = 3m, top curve is v, bottom curve is u
at 150 seconds. the velocity field is more

stable this far down stream.

very difficult measure this quantity and it is stated on the OpenFOAM forum [2] in a number

of threads that the drag, which is the utility rewritten, only gives good results for meshes with

extremely good quality (i.e millions of cells).

The Strouhal number is extracted from the simulation by measuring in the a slice of the flow

field. Studying Figure 3.11 it shows that between the darker field closer to the cylinder and

the first vortex which is the next dark field it is half a period. One period extends over 10 m.

Considering that the flow speed is 0.5 m/s, the frequency is 1
20 . (3.2) gives then a value for St of

about 0.2 which is higher than the value expected for a successful simulation, which is around

0.12 [13] . Other methods, including looking at the pressure variation would also be possible.

3.3.4 Mesh B

One refinement box was defined in the domain as can be seen in Figure 3.14. One can see very

fine cells growing out from the cylinder. The refinement box makes the mesh of better quality

by means of using more and smaller cells. Here Cd = 3.43 and it is not lower than the value in

mesh A and considerably higher than the 1.2 that is expected. What is interesting to notice is

that the flow start shedding vortices after 144 seconds. As can be seen in Figure 3.15 it is just
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Figure 3.11: Mesh A: a slice through the domain cutting the cylinder in half and along the
long side of the domain from inlet to outlet showing the velocity field. It is possible to read the
distance between the vortices, as very close to 5 meter between the darker lines which gives a

period over 10 meters.

Figure 3.12: Mesh B: a slice through the domain cutting the cylinder in half and along the
long side of the domain from inlet to outlet showing the velocity field. It is possible to read
the distance between the vortices, as very close to 5 meter between the darker lines, giving a

period over 10 m.
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Figure 3.13: Mesh C: a slice through the domain cutting the cylinder in half and along the
long side of the domain from inlet to outlet showing the velocity field. It is possible to read
the distance between the vortices, as very close to 5 meter between the darker lines, giving a

period over 10 m.

starting to shed. The Strouhal number of about 0.2 for the flow in mesh B is about the same as

in mesh A and still a bit high. The vertical cut through the domain, showing the darker fields as

vortices show that the distance is very similar to that in figure 3.12. The simulation took about

5 days before showing these kind of results with the same setup of the system as in mesh A.

Figure 3.14: Mesh B: the mesh close to the cylinder in. The mesh shows that the splitting
of cells is made with smaller cells the in mesh A.
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Figure 3.15: Mesh B: streamlines for the flow, time 144, this when the flow starts shedding
votices.

3.3.5 Mesh C

The mesh in this case has been constructed somewhat differently. The cell size at the domain

boundary is four times larger than in the previous cases but instead two refinement boxes have

been constructed, one similar to Figure 3.14 and one more as a rectangular cylinder around the

cylinder patch. The mesh is depicted in Figure 3.16, as can be seen when comparing with the

mesh in Figure 3.14 the cells split up faster and this is due to the fact that the background mesh

has cells of four times the volume. The background mesh can be seen as an indicator of the

final quality of the mesh. Also here the drag coefficient is about 2.5 times higher than what is

expected and found in earlier simulations and experiments in [10], [9], [8] and [11]. Also here,

Figure 3.13 shows that the distance between the votices is as before and the Strouhal number is

also here the same.

3.4 Conclusions

The Table 3.4 shows the result from earlier experiments compared to the present result.
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Figure 3.16: Mesh C: close to the cylinder.

Figure 3.17: Mesh C: Streamlines for the time 112 seconds when the flow starts shedding
vortices

Source Cd St

[9] 1.56 0.168

[8] 1.45 0.162

[11] 1.40 0.2

[10] 1.675 0.188

Mesh A 3.47 0.2

Mesh B 3.43 0.2

Mesh C 3.23 0.2
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As it seems, the flow is behaving as expected for all three meshes with respect to the Reynolds

number and the visual effect. The Strouhal number and the drag coefficient are higher compared

to the numbers in Table 3.4 when comparing to existing data. The streamlines show that over

time the behaviour is almost identical to what is found in [10] and concerning the fact that the

simulation is performed in a three dimensional domain rather than in a two dimensional as is

more common seems to pose no problem and as long as staying away from the boundaries the

flow is not affected by the boundaries for a Reynolds number of 100 [8].

As could be seen in the plots, Figure 3.5 - Figure 3.10, the flow in the y-direction is close to zero

when getting within one meter from the walls. This is something that need further investigation

and analysis of the numerical implementation of the slip boundary condition as implemented in

OpenFOAM. As can be seen the gradient is very shap from something that looks undisturbed

to a value very close to zero and it is assumed that the flow close to the cylinder is not affected.

The implementation of the utility calculating the drag coeffcient does not seem to work and

more time has to be spent on finding the problem. It has been stated that the original version

only gives satisfactory results for cell sizes of extremely small scale and that would here mean

that some 5 million cells are needed to obtain a good result.

It is interesting to notice the fact that the meshes need a different amount of time to reach the

stage where they start shedding vortices. It seems that this is due to how well the boundary

layer on the cylinder is resolved. Considering that the more cells that can be fit on the surface

the more circular the cylinder will be. The bad result is because the resolution normal to the

cylinder is not fine enough.
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Fluid Solid Interaction

In many engineering problems the study the fluid-solid interaction can give useful information

on the behavior of a system. This report is mainly focusing on marine applications where a ship

will disturb the water surface. The ship will, given a velocity cause the surface to break and

spray close to the hull. Adding mesh motion to this not only requires more computer power but

also adds more complexity to the surface reconstructions. Resolving these issues give way to

studies of ship induced waves and more.

This chapter covers the implementation of a six-DoF1 solver to couple with a VoF2 solver. Here

a floating box is considered as a simplification of more complex structures. The focus of this

first study of a Volume of Fluid solver coupled with mesh motion in six degrees of freedom is to

present three simple basic cases.

Case A : the water surface is completely undisturbed and the box floats submerged to 50%.

Here the water surface and the horizontal plane cutting through the center of gravity are

aligned.

Case B : same set up as above with the addition of a wave that is used to set the box moving.

Case C : same set up as in case B with a more resolved mesh.

The cases are used to describe how it is possible to couple a VoF-solver with a moving mesh in

OpenFOAM.

4.1 OpenFOAM

OpenFOAM is, as mentioned in the introduction, a C++ library. It includes a large number of

applications and utilities to use out-of-the-box. Applications here refer to a code that is used

to solve problems in continuum mechanics. Utilities, are used for pre and post processing. The
1Six Degrees of Freedom
2Volume of Fluid method

24
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purpose of the library is that it should be used as a base to build more complex and more specific

applications and utilities. [3]

The applications and utilities always works in three dimensions. For cases in two dimensions

this is solved by only having one cell thickness and not solve equations in the third direction.

As the library is designed for continuum mechanics it is convenient to work with tensors to

describe physical entities, often with the addition of a dimensional specification to make sure the

dimensions (7 of them: kg, m, s, K, kgmol,ampere, candela) work out as desired. [4]

Here an existing solver has been modified to suit marine applications. Additional code has

been written to allow for extraction for viscous and buoyancy forces and transform these forces

to displacement which has been assigned the mesh. Though the solver does not involve any

damping system it represents the structure of a 6-DoF coupled VoF-solver and extending this

basic structure to account for turbulence forces and damping is possible within the scope of

OpenFOAM.

4.2 Theoretical Introduction

4.2.1 Volume of Fluid Method

The Volume of Fluid method (VoF) is a two-phase surface compression method that solves the

Navier-Stokes equations. In the VoF-method the two phases are considered as a single phase

with a volume fraction between 0 and 1, in Section 2.1.2 in (4.2.1).

γ =


1 if in the water

0 < γ < 1 in the region around the surface

0 if in the air

The interface is not a sharp surface but rather a region where further refinements are performed.

The velocity field is estimated from the previous values and a PISO-algorithm is used to solve

an extra transport equation for the volume fraction after which the velocity field is updated.[7]

4.2.2 Under-relaxation

Under-relaxation is an efficient way to stabilize numerical iterative schemes by controlling to

what extent the solver uses the values previously calculated to determine the new ones. Let α

be the under-relaxation factor, then

φ := αφnew + (1− α)φold, α ∈ [0, 1] (4.1)

where φold is the old value and φnew is the new value of a parameter in the solver. [14]
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4.2.3 Degrees of Freedom, Forces and angular momentums

ls

Figure 4.1: Axes describing the 6 degrees of freedom

The term six degrees of freedom (6-DoF) refers to how the movement of a body is limited.

Having all six degrees of freedom means that the body can translate and rotate along three axes

in a three dimensional system. Figure 4.1 shows the possible translations and rotations in three

dimensional space. Solving the Navier-Stokes equations for flow it results in forces and these can

be calculated by integrating over the body, as in equations (4.2) and (4.3)

F =
∫

S

F ext + F flowdS (4.2)

M =
∫

S

M ext +MflowdS (4.3)

where F is the total force, the buoyancy force or pressure force and the viscous forces, Fflow

and M is the total moment around the mass center due to pressure and viscous forces, Mflow.

F ext is here only the gravity since no other external forces are considered [15].

4.2.4 Rotation and Translation

From the forces extracted as above, the velocity and the displacement for one time step are

calculated. It is here necessary to use the accumulated distances because each time step has

a mesh updating function that resets the mesh. The calculations of flux and other quantities

are done according to the moved mesh. Two objects, quaternion and septernion can store a

translation or rotation and when called return a tensor for rotation or a vector for translation.

An object of the class septernion consists of a vector and a quaternion. The theoretical focus

here will be on the quaternion which is the mathematical object handling the rotation.

A quaternion a vector in four-dimensional vector space, written as a linear combination of the

basis elements {1, i, j, k} as a1 + bi+ cj + dk, where a, b,c and d are real numbers and i2 = j2 =

k2 = ijk = −1 as found by the Irish mathematician Hamilton. Here a is called the scalar part

and bi+ cj + dk is called the vector part. The vector part of the quaternion can be identified to

be the same as an element of R3 vector space.
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In OpenFOAM an object of the quaternion class consists of a vector and a scalar - the angle of

rotation. A quaternion can be constructed in different ways, in this work is has been done by

specifying the three Euler angles. This means explicitly that one creates three quaternions, one

for each angle in the three directions and multiply them together as qx ∗ qy ∗ qz. The conversion

between the Euler angles and the quaternion is described mathematically as follows

w = c1c2c3 − s1s2s3 vx = s1s2c3 + c1c2s3

vy = s1c2c3 + c1s2s3 vz = c1s2c3 − s1c2s3

c1 = cos(roty) c2 = cos(rotz) c3 = cos(rotx)

s1 = sin(roty) s2 = sin(rotz) s3 = sin(rotx)

where the w is the resulting angle for the quaternion and vi the vector and roti is the rotation

around that axis, i = x, y, z. The conversion from a quaternion back to a rotation vector in R3

is described below.

w2 =
√
w x2 =

√
vx

y2 =
√
vy z2 =

√
vz

txy = 2 ∗ vx ∗ vy twz = 2 ∗ w ∗ vz

txz = 2 ∗ vx ∗ vz twy = 2 ∗ w ∗ vy

tyz = 2 ∗ vy ∗ vz twx = 2 ∗ w ∗ vx
w2 + x2 − y2 − z2 txy − twz txz + twy

txy + twz w2 − x2 + y2 − z2 tyz − twx

txz − twy tyz + twx w2 − x2 − y2 + z2


These two mathematical maps, first from R3 to the four dimensional vector space of quaternions

and then in the opposite direction describe how the implementation is made in OpenFOAM. This

is used in practice once the displacement has been calculated from the forces and the rotation is

applied to the patch. It is possible to explicitly write out the rotation matrix but usning these

built in functions makes the code easier to read and understand.

4.3 Dynamic Mesh

In many of applications it is interesting to examine the interaction between a solid and one or

more fluids. To accomplish this it is necessary to move parts of the mesh and for that purpose

there are a number of methods, see [16]. The one here considered is mesh deformation, where

the cells in the mesh are deformed (stretched or compressed) due to the motion of a part of the

mesh.
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4.3.1 Mesh Deformation

Mesh deformation can mathematically be considered as a map between the domain D, which

represents the configuration at a certain time t with a boundary B, and D’ ∆t time later. It is only

interesting to consider a very small subset of all the possible maps that fulfill this requirement,

namely the ones that will result in domain D’ where the meshes fulfil the requirements given in

Section 3.2 [16]. Consider Figure 4.2 which shows the mesh in the xy-plane at the initial set up.

Already here the mesh shows some signs of low quality. Compare this to the mesh in Figure 4.3

which shows that many cells have been skewed severely.

Figure 4.2: the xy-plane at time 0, the
mesh is showing some signs of being of low

quality

Figure 4.3: the xy-plane after deforma-
tion. The shape of the box is not changed

only translated and rotated.

4.4 Programming

The aim is to move the points on the box and the cells neighboring it by describing them

explicitly to the pointDisplacement and cellDisplacement fields, using the ==-operator at each

time step of the solver. This is implemented in the file krafter.H. The ==-operator assigns a

field of vectors describing the accumulated displacement up to that time step. This means that

the diffusion algorithms described in [17] can be used in the mesh. This is important as it is

not possible to move only a few points in the mesh without destroying the shape of the cells.

The neighboring points need to be moved as well and this is done by the motionFvSolvers by a

diffusion algorithm.

4.4.1 Algorithm

The following algorithm describes the extraction of the forces and the implementation of the mesh

moving scheme. More in-depth explanation will be given in the following section.

while Time is running do

Extract forces and angular momentums from pressure, buoyancy.

Extract forces and angular momentums from viscous effects.
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Divide by mass for forces and inertia for momentum.

Extract the acceleration by multiplication of the real time interval.

Reset and move center of gravity.

Translate patch to origin.

Rotate in accordance to momentum.

Translate back to origin.

Translate according to forces.

end while

4.4.2 Implementation

Four files are added to the original version of interDyMFoam in OpenFOAM-1.5: initialize-

ForceBalance.H, which initializes the variables and reads the motion fields, readForceBalance-

Controls.H, which reads from the forceFoamDictionary, krafter.H, which calculates the forces

and angular momentums and moves the mesh and finally pEqnGravity.H, which reconstructs the

pressure. In the file krafter.H one finds the implementation of the forces and angular momentums

and the extraction of the displacement by translation and rotation and finally the assignment of

these displacements to the mesh.

The forces are calculated in krafter.H as follows: the buoyancy force from the pressure is summed

up for the patch and then multiplied by the area vectors of the patch, resulting a pressure force

with a given direction. For the angular momentums the center of gravity CgCenter, is subtracted

from the position of the points on the patch so that the moment is about the center of gravity

rather then just around the origin. The gravity force is the product of the mass and the vector

representing the magnitude and direction of the gravity acceleration. Note that the patch is built

from faces which are built from points, the cells concerned are the ones that are neighboring the

patch and have one face that is a boundary face of the same. The Sf()-function in the extraction

of the pressure forces returns the area vectors for the faces. Cf() returns the face centers. The

viscous force and moment are extracted from the velocity field where magSf() is used to bring

out cell face area. These three functions are called from fvMesh, which is the base class for

the dynamicFvMesh which is the type of mesh used in simulations with interDyMFoam. The

forces and angular momentums are added together and later called mometStatic and forceStatic

in krafter.H. From these the accumulated displacement and angle are calculated.

At initialization, the original positions of the points and cells are extracted and assigned to the

fields tempPoint and tempCell. First copying these to temporary fields on which the rotation and

transformation is performed. The temporary field is then translated to the origin by subtraction

from the center of gravity and by using the conversion from quaternion to a rotational matrix

given in (4.4). This produces a new temporary field. The field is then translated back to its

original position. This field is then translated by adding a vector to its position and then the

original field is subtracted from the one obtained after translation to extract the displacement.

Finally the center of gravity is translated to its new position. See appendix A for the Dictionaries

involved in the simulations with this solver.
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4.4.3 Possible Alterations

There are a few parameters that are known to have an impact on the performance of the sys-

tem. Firstly, different settings with the initial configuration of the water can be examined. In

system/setFieldsDict there are two boxToCell regions and the latter of the two can be changed

by changing the size of its bounding box. This will directly influence how the box moves due to

external forces and angular momentums. In constant/forceFoamDict, the gravity will not influ-

ence the rotation. Changing the weight of the box will define how much the box is submerged.

Secondly, the accelLim can be set to limit the displacement. The third parameter which can

be changed is the under-relaxation factor, see (4.1) which is found in the system/fvSolvers file

at the very end. Adding to these, a number of possible alterations the mesh can be performed.

The mesh can be refined or altered in different ways. Using a finer mesh will make it the sim-

ulation run more slowly and it will also be more sensitive to displacement. In the mesh folder

in system/snappyHexMeshDict the parameters for the snappyHexMesh are set. Setting the level

for the surface refinement differently will change the mesh structure close to the box.

4.5 Results

4.5.1 Mesh

A mesh was generated in snappyHexMesh, first using blockMesh to create a background mesh

with size 40x40x40 meters and snappyHexMesh placed a box as a searchable surface with the size

6x6x6 meters in the center of the domain, depicted in Figure 4.4. The snappyHexMesh utility

created the box without any refinement box in order to keep the cell size fairly large. Since a

small cell will suffer more from skewness given a certain displacement, a larger cells are preferred.

Cells used in case A, B:

Number of cells of each type:

hexahedra: 85552

polyhedra: 5679

Case C:

Number of cells of each type:

hexahedra: 510272

polyhedra: 0

There are some 6 per cent cells that are not hexagonal in the coarser grid. This will affect the

quality of the solution close to the box. The polyhedral cells are not regular and are used in the

transition between the triangular elements on the surface to connects with the hexagonal cells

in the initial mesh. It can be seen on figures with the box that the iso-surface, for γ = 0.5, close

to the box has a rough texture. Using a VOF-method it is important to have hexagonal cells for

the quality of the solution. The polyhedral cells are boundary cells and thus closer to the box,
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Figure 4.4: The domain and the surface of the water.The water fills the domain from -20m
to 0m along the z-axis

which causes the iso-surface to look strange in a region close to the box. How much this actually

affects the quality of the solution is not clear.

4.5.2 Boundary Conditions

For all the patches, the pressure p, the dynamic pressure pd and γ are assigned the zeroGradient

or the Neumann boundary condition. This is because all the patches are considered solid walls.

For the velocity U , the box-patch was assigned the movingWallVelocity-Boundary Condition,

which accounts for the movement of the fluid as well as for the movement of the box-patch, to

make sure that these there was no flux into the box. Without using this boundary condition, the

solver will interpret this as if the wall is not moving and let the flux pass to positions where there

actually is a box. All the other patches in U are given the boundary condition slip, which when

the base patch is patch works as free slip with no flow in the direction normal to the patch. This

will also reflect incoming waves. It can be added that if the wall base patch is used, the cells

next to the wall will also be considered as wall as well, which can have effects on the flow. The

patches in the two new files added to use the solver, cellDisplacement and pointDisplacement are

all assigned fixedValue and uniform (0 0 0), this is also called the Dirichlet boundary condition.

4.5.3 Initial Values

In order to create some movements in the fluids an extra region of water was placed on top of

the one covering half the domain, see Figure 4.10. This was done by setting the second region in

system/setFiledsDict a bit above the first region. The height of this region will determine how

the box moves due to the forces from the water on the box. The box is at time zero submerged

to fifty percent in the water with its vertical sides orthogonal to the water surface. The under-

relaxation factors was set to 0.7 for U and 0.5 for p and γ so to weight in the old results and

stop from to sharp jumps in the solution.
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4.5.4 Case A: a calm surface

If a box is floating on perfectly still water there should be no reason for the box to flip over.

In this case it is a rather unstable system where the center of gravity is aligned with the water

surface. The only force applied to the box is the gravity force which is homogeneous over the

box. The pressure forces and viscous forces will keep the box floating. In the simulation the box

was placed on the water surface and the simulation ran for 16 seconds until the solver diverged

due to cell deformation. The box had flipped over. In Figure 4.5 the initial set up is shown and

as can be seen the surface is perfectly calm. The solver has a tendency to, due to numerical

discrepancies and possibly a low mesh quality, introduce disturbances. In Figure 4.6 the solver

starts moving the box and in Figure 4.7 it diverges. The reason for this behavior could be linked

to the mesh quality and the stability of the solver. This motivates some sort of damping further

than the one constructed for the acceleration or using another approach than mesh deformation

to handle the mesh movement.

Figure 4.5: Case A: initial condition,
undisturbed surface.

Figure 4.6: Case A: after 8 seconds, the
surface is disturbed from numerical dis-

crepancies.

Figure 4.7: Case A: the box and surface just before divergence, the numerical scheme and
the mesh is not accurate enough.
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Figure 4.8: Case A: Slice in the yz-plane with pressure and velocity glyphs at the first time
step

Figure 4.9: Case A: Slice in the yz-plane with pressure and velocity glyphs at the last time
step.

The pressure is visualized at the first, Figure 4.8 and at the last timestep, Figure 4.9. Here a

yz-plane through the cube with pressure and velocity vectors shows the pressure distribution.

The line through the cube at y = 0 is the surface of the water.

4.5.5 Case B: a coarse mesh

When setting the initial value to be a static wave or rather three meter high region covering part

of the domain as can be seen in Figure 4.10 the box is behaving as one could expect. It remains

symmetric when the wave passes, Figure 4.11. In Figure 4.12 one can see the box tilt due to the

forces from the water and start to tip over on the side in Figure 4.13. Further in Figure 4.14

and in Figure 4.15 the box starts rotating around the Z-axis and tilts that much that the solver

diverges due to skewed cells, Figure 4.16.
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Figure 4.10: Case B: initial condition
where part of the surface one is elevated.

Figure 4.11: Case B: the wave just passes
the box which is still stable

Figure 4.12: Case B: the box starts tilt-
ing a bit due to the forces from the wave

Figure 4.13: Case B: the box leans over
to the left

Figure 4.14: Case B: the box starts to
rotate

Figure 4.15: Case B: the box has now
rotated to a critical stage
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Figure 4.16: Case B: The box just before divergence.

Figure 4.17: Case A: Slice in the yz-plane with pressure and velocity glyphs, velocity vectors
at the first time step

Figure 4.18: Case A: Slice in the yz-plane with pressure and velocity glyphs, velocity vectors
at the last time step.

4.5.6 Case C: a fine mesh

A mesh with cells, one fourth of the volume of the original ones, with 0.25 m length was used for

this simulation. The result is similar but the resolution was better on the iso-surface. A region
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with a height of three meters covering the part of the domain next to the box was set as the

initial condition, see Figure 4.19. The box behaves in much the same way as in the case with

fewer cells. In Figure 4.20 the wave has passed the box and just hits the opposite wall where it

is reflected and in Figure 4.21 it returns from the left again and hits the box a third time. Here

the box is already starting to tilt and rotate and the fourth time it hits, Figure 4.22 where water

covers part of the side which is facing upwards, the solver again diverges.

Figure 4.19: Case C: initial condition,
the static wave has a height of 3 meters

Figure 4.20: Case C: the wave hits the
opposite side and the box is tilting

Figure 4.21: Case C: the wave hits again
for the third time, coming from the left

Figure 4.22: Case C: wave hits the fourth
time and now sinks the box and the solver

diverges

4.6 Discussion

This sort of set up, using a cube that floats on water would be an unstable system in any real

world experimental set up as well, considering that half the cube is submerged in the water and

the center of gravity is right at the level of the surface. It describes though, how the box moves

according to the forces induced by the wave hitting it. If we consider a case where no wave is
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induced and the water surface is perfectly still the box would be left balancing on the surface,

Figure 4.5 shows the surface before the simulation starts.

4.6.1 Divergence

The solver diverges after about 10 seconds for the case with the coarse mesh. This is a result

of a deterioration in mesh quality which is caused by the moving patch. In paraFoam there is

a filter called mesh quality and when applying this with the setting hexagonal - skew it shows

that the cells close to the patch are severely deformed in the last time step. This could probably

be helped by adding some kind of damping or stabilization scheme to the solver.

4.6.2 Future Work and Improvements

A lot of work and further refinements can be done to make this code more accurate and more

efficient, both when it comes to the mesh handling as well as the VoF-parameters, for example,

the under-relaxation factors could be optimized. One of the solutions considered was to have

some kind of spring damping system for both rotation and translation to stop the box from

moving more than the mesh allows before its quality deteriorates. Another possibility would

be to use a lower Courant number and thereby shorter time steps. This could improve the

accuracy somewhat but at the same time it would require longer simulations. Further, here

a mesh generated in snappyHexMesh was used without a refinement box. Using the simpler

blockMesh utility would even allow for larger cells close to the surface and therefore provide a

more forgiving mesh. On the other hand the resolution of the boundary layer close to the box

would be too coarse to calculate the viscous forces. Since the displacement has to be related to

the cell size, a move with small cells has a larger impact on the mesh quality than if the mesh is

coarse.
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Conclusion

Here some last concluding notes are made to sum up the work. The result from the two previous

parts could be used to assemble a tool for marine applications. With some script language

to assemble the different parts into a package that can be used to solve continuous mechanics

problems involving two phases and a moving mesh.

In Chapter 3 automatic meshing scheme snappyHexMesh was examined and it can be said to

give reasonable results. Much of the meshing in CFD is made by hand and often the meshing

skill of the person will affect the result. The work involves to a large extent visual examination

of the mesh and adjustments are made where needed. Since snappyHexMesh only relies on text

based input it is often more difficult to make adjustments. Though extensions to the code are

planned which allow for specifications of refinements based on certain lines of points of the StL.

The calculation of the drag coefficient can be improved by addition of cell layers close to the

cylinder. In the current set up no layers are used since it is not clear if these are correctly set

up in the current implementation of snappyHexMesh. The idea of the layers would be to create

a number of layers of very fine cells close to the cylinder before letting the cells expand to meet

the background mesh.

The implementation of the VoF-solver, described in Chapter 4, was by far the more time con-

suming part of the work. It involved such difficulties as where in the code library to implement

the extraction of the forces, move the mesh and update the pressure. After consulting the fo-

rum [2] on the subject, it seemed most promising to work directly in the solver code rather than

rewriting any boundary conditions or constructing a new kind of mesh.

The set up used in this report has some disadvantages. The center of gravity is just aligned with

the water surface and this results in a neutral but very sensitive system. All three simulations

have been run with this set up and though it shows the basic idea of the solver it certainly

would be interesting to examine a set up where the box is submerged more than 50 percent in

the water. The instability of the system can clearly be seen in the experiment with the calm

surface, Case A, where he box flips over after some time steps. Before flipping over the solver

shows some signs of low quality when for no particular reason starts filling the cells above the

surface with water. This is due to deformed cells. It makes it look as if water is shooting out of

38
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the calm surface and onto the box, a strange behavior which seems to be present in commercial

codes as well when using a non-uniform grid.

Some notes on what to think about when running the solver used in Chapter 4. It is important

is to match the resolution of the mesh with the need for mesh movement. It became clear that if

using a fine resolution in the grid near the moving object, the box in Chapter 4, then the solver

will be more prone to diverge since the cells are skewed.

The difference between Case B which is the coarse mesh and Case C which has a fine mesh

is that the resolution in C is fine enough to use only hexagonal elements. This improves the

performance of the solver and as can be seen in the figures the water surface has a smoother

texture close to the box.

In short, this free open source library offers the possibility to assemble a library of tools for

continuous mechanics. It is unfortunatly not well explained and documented how to implement

new tools nor is there much information on how to use the exising ones apart from some tutorials.

But the code is free and there is plenty of information to be gathered if searching the forum and

reading the source code. With a bit of time one can build tools to accommodate many needs

by building libraries for specific purposes. If the problem one is facing as a CFD engineer

often calls for a similar type of simulations it could be an economically efficient approach to use

OpenFOAM.
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