Introduction	Theory	Algorithm 0 0	Result	Discussion and Improvements

InterDyMFoam coupled with forces and mesh motion in 6-DoF

Erik Ekedahl

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

프 🕨 🛛 프

Introduction	Theory	Algorithm o o	Result	Discussion and Improvements
Outline				

1 Introduction and motivation

2 Theory

3 Algorithm

- Usage
- Possible Alterations

4 Result

5 Discussion and Improvements

프 🕨 🗆 프

.≡...>

< < >> < </>

Introduction	Theory	Algorithm o o	Result	Discussion and Improvements
Motivation				

Volume-of-Fluid method and dynamic mesh with 6-degrees of freedom

- Marine Applications
- Base:interDyMFoam Volume of Fluid.

3

Introduction	Theory	Algorithm o o	Result	Discussion and Improvements
Motivatio	n			

- Volume-of-Fluid method and dynamic mesh with 6-degrees of freedom
- Marine Applications
- Base:interDyMFoam Volume of Fluid.

ъ

Introduction	Theory	Algorithm o o	Result	Discussion and Improvements
Motivatio	n			

- Volume-of-Fluid method and dynamic mesh with 6-degrees of freedom
- Marine Applications
- Base:interDyMFoam Volume of Fluid.

ъ

Introduction	Theory	Algorithm o o	Result	Discussion and Improvements
Theory				

Two phases; gas and liquid in this case.

Interface

 $\gamma = \begin{cases} 1 & \text{if in the water} \\ 0 < \gamma < 1 & \text{in the region around the surface} \\ 0 & \text{if in the air} \end{cases}$

Under-relaxation

$$\phi_{new} = \alpha \phi_{new} + (1 - \alpha) \phi_{old} \tag{1}$$

イロン 不良 とくほう 不良 とうほ

Introduction	Theory	Algorithm o o	Result	Discussion and Improvements
Theory				

Two phases; gas and liquid in this case.

Interface

 $\gamma = \begin{cases} 1 & \text{if in the water} \\ 0 < \gamma < 1 & \text{in the region around the surface} \\ 0 & \text{if in the air} \end{cases}$

Under-relaxation

$$\phi_{new} = \alpha \phi_{new} + (1 - \alpha) \phi_{old} \tag{1}$$

イロン 不良 とくほう 不良 とうほ

Introduction	Theory	Algorithm o o	Result	Discussion and Improvements
Theory				

Two phases; gas and liquid in this case.

Interface

 $\gamma = \begin{cases} 1 & \text{if in the water} \\ 0 < \gamma < 1 & \text{in the region around the surface} \\ 0 & \text{if in the air} \end{cases}$

Under-relaxation

$$\phi_{new} = \alpha \phi_{new} + (1 - \alpha) \phi_{old} \tag{1}$$

<ロ> <四> <四> <四> <三</td>

Introduction	Theory	Algorithm o o	Result	Discussion and Improvements

Six Degrees of Freedom

Figure: 6-DOF

イロト 不得 とくほ とくほとう

Introduction	Theory	Algorithm 0 0	Result	Discussion and Improvements

Forces and Moments

$$F = \int_{S} F_{ext} + F_{flow}$$
(2)
$$M = \int_{S} M_{ext} + M_{flow}$$
(3)

イロン 不得 とくほ とくほ とうほ

Forces from gravity, pressure and viscous effects

Introduction	Theory	Algorithm 0 0	Result	Discussion and Improvements

Forces and Moments

$$F = \int_{S} F_{ext} + F_{flow}$$
(2)
$$M = \int_{S} M_{ext} + M_{flow}$$
(3)

イロト 不得 とくほ とくほ とう

Forces from gravity, pressure and viscous effects

3

Introduction	Theory	Algorithm o o	Result	Discussion and Improvements

Quaternion - Hamilton 1843

- Base: {1, *i*, *j*, *k*} as *a*1 + *bi* + *cj* + *dk*
- Where *a*, *b*,*c* and *d* are real numbers and $i^2 = j^2 = k^2 = ijk = -1$
- Composed of one vector and one scalar in OF.
- \blacksquare Euler angles \rightarrow quaternion and back.

Introduction	Theory	Algorithm o o	Result	Discussion and Improvements

Quaternion - Hamilton 1843

- Base: {1, *i*, *j*, *k*} as *a*1 + *bi* + *cj* + *dk*
- Where *a*, *b*,*c* and *d* are real numbers and $i^2 = j^2 = k^2 = ijk = -1$
- Composed of one vector and one scalar in OF.
- \blacksquare Euler angles \rightarrow quaternion and back.

Introduction	Theory	Algorithm o o	Result	Discussion and Improvements

- Quaternion Hamilton 1843
- Base: {1, *i*, *j*, *k*} as *a*1 + *bi* + *cj* + *dk*
- Where *a*, *b*,*c* and *d* are real numbers and $i^2 = j^2 = k^2 = ijk = -1$
- Composed of one vector and one scalar in OF.
- Euler angles \rightarrow quaternion and back.

Introduction	Theory	Algorithm o o	Result	Discussion and Improvements

- Quaternion Hamilton 1843
- Base: {1, *i*, *j*, *k*} as *a*1 + *bi* + *cj* + *dk*
- Where *a*, *b*,*c* and *d* are real numbers and $i^2 = j^2 = k^2 = ijk = -1$
- Composed of one vector and one scalar in OF.
- Euler angles \rightarrow quaternion and back.

Introduction	Theory	Algorithm o o	Result	Discussion and Improvements

- Quaternion Hamilton 1843
- Base: {1, *i*, *j*, *k*} as *a*1 + *bi* + *cj* + *dk*
- Where *a*, *b*,*c* and *d* are real numbers and $i^2 = j^2 = k^2 = ijk = -1$
- Composed of one vector and one scalar in OF.
- $\blacksquare Euler angles \rightarrow quaternion and back.$

Introduction	Theory	Algorithm o o	Result	Discussion and Improvements

mesh Deformation

Figure: the *xy*-plane at time 0 seconds

Figure: the *xy*-plane at time 16 seconds

э

Introduction	Theory	Algorithm ○ ○	Result	Discussion and Improvements
Algorithm				

Extract forces and moments from pressure, buoyancy. Extract forces and moments from viscous effects. Divide by mass for forces and inertia for momentum. Extract the acceleration by multiplication of the real time interval.

Reset and move center of gravity.

Translate patch to origo.

Rotate in accordance to momentum.

Translate back to origo.

Translate according to forces.

Introduction	Theory	Algorithm ○ ○	Result	Discussion and Improvements
Algorithr	n			

Extract forces and moments from pressure, buoyancy.

Extract forces and moments from viscous effects. Divide by mass for forces and inertia for momentum. Extract the acceleration by multiplication of the real time interval.

Reset and move center of gravity.

Translate patch to origo.

Rotate in accordance to momentum.

Translate back to origo.

Translate according to forces.

Introduction	Theory	Algorithm ○ ○	Result	Discussion and Improvements
Algorithr	n			

Extract forces and moments from pressure, buoyancy. Extract forces and moments from viscous effects.

Divide by mass for forces and inertia for momentum. Extract the acceleration by multiplication of the real time interval.

Reset and move center of gravity.

Translate patch to origo.

Rotate in accordance to momentum.

Translate back to origo.

Translate according to forces.

Introduction	Theory	Algorithm ○ ○	Result	Discussion and Improvements
Algorithr	n			

Extract forces and moments from pressure, buoyancy. Extract forces and moments from viscous effects. Divide by mass for forces and inertia for momentum.

Extract the acceleration by multiplication of the real time interval.

Reset and move center of gravity.

Translate patch to origo.

Rotate in accordance to momentum.

Translate back to origo.

Translate according to forces.

Introduction	Theory	Algorithm ○ ○	Result	Discussion and Improvements
Algorithr	n			

Extract forces and moments from pressure, buoyancy. Extract forces and moments from viscous effects. Divide by mass for forces and inertia for momentum. Extract the acceleration by multiplication of the real time interval.

Reset and move center of gravity. Translate patch to origo. Rotate in accordance to momentun

Translate back to origo.

Translate according to forces.

Introduction	Theory	Algorithm ○ ○	Result	Discussion and Improvements
Algorithr	n			

Extract forces and moments from pressure, buoyancy. Extract forces and moments from viscous effects. Divide by mass for forces and inertia for momentum. Extract the acceleration by multiplication of the real time interval.

Reset and move center of gravity.

Translate patch to origo. Rotate in accordance to momentum Translate back to origo. Translate according to forces.

Introduction	Theory	Algorithm o o	Result	Discussion and Improvements
Algorithr	n			

Extract forces and moments from pressure, buoyancy.

Extract forces and moments from viscous effects.

Divide by mass for forces and inertia for momentum.

Extract the acceleration by multiplication of the real time interval.

Reset and move center of gravity.

Translate patch to origo.

Rotate in accordance to momentum.

Translate back to origo.

Translate according to forces.

Introduction	Theory	Algorithm o o	Result	Discussion and Improvements
Algorithr	n			

Extract forces and moments from pressure, buoyancy.

Extract forces and moments from viscous effects.

Divide by mass for forces and inertia for momentum.

Extract the acceleration by multiplication of the real time interval.

Reset and move center of gravity.

Translate patch to origo.

Rotate in accordance to momentum.

Translate back to origo.

Translate according to forces.

Introduction	Theory	Algorithm o o	Result	Discussion and Improvements
Algorithr	n			

Extract forces and moments from pressure, buoyancy.

Extract forces and moments from viscous effects.

Divide by mass for forces and inertia for momentum.

Extract the acceleration by multiplication of the real time interval.

Reset and move center of gravity.

Translate patch to origo.

Rotate in accordance to momentum.

Translate back to origo.

Translate according to forces. end while

Introduction	Theory	Algorithm o o	Result	Discussion and Improvements
Algorithr	n			

- Extract forces and moments from pressure, buoyancy.
- Extract forces and moments from viscous effects.
- Divide by mass for forces and inertia for momentum.
- Extract the acceleration by multiplication of the real time interval.
- Reset and move center of gravity.
- Translate patch to origo.
- Rotate in accordance to momentum.
- Translate back to origo.
- Translate according to forces.

Introduction	Theory	Algorithm ○ ○	Result	Discussion and Improvements
Algorithr	n			

Extract forces and moments from pressure, buoyancy.

Extract forces and moments from viscous effects.

Divide by mass for forces and inertia for momentum.

Extract the acceleration by multiplication of the real time interval.

Reset and move center of gravity.

Translate patch to origo.

Rotate in accordance to momentum.

Translate back to origo.

Translate according to forces.

Introduction	Theory	Algorithm o o	Result	Discussion and Improvements

ForceFoamDict

forceBalance forceBalanceEnabled yes;

// Mass of the moving part //M M [1 0 0 0 0 0 0] 136.51; M M [1 0 0 0 0 0 0] 108000;

- // Mass of the moving part inertia inertia [1 2 0 0 0 0 0] 648000;
- // Limit the maximum acceleration on the system (Bandwidth limitation) accelLim accelLim [0 1 -2 0 0 0 0] 1.0e-2;
- // Acceleration due to gravity g g [0 1 -2 0 0 0 0] 9.81;
- // Direction vector of the acceleration due to gravity gVector (0 0
 -1);
- // Direction vector of the acceleration due to gravity CgCenter (0 0 0);

/*

motionPatches (cube, egion0);

Introduction	Theory	Algorithm	Result	Discussion and Improvements
Usage				
Alterations	S			

Extract the archives.

- my6DOFFoam: run wclean then wmake
- kubtest: run application with 'my6DOFFoam'

ъ

ヘロン ヘアン ヘビン ヘビン

Introduction	Theory	Algorithm	Result	Discussion and Improvements
Usage				
Alteratior	าร			

- Extract the archives.
- my6DOFFoam: run wclean then wmake
- kubtest: run application with 'my6DOFFoam'

ъ

ヘロト 人間 ト ヘヨト ヘヨト

Introduction	Theory	Algorithm	Result	Discussion and Improvements
Usage				
Alteration	IS			

- Extract the archives.
- my6DOFFoam: run wclean then wmake
- kubtest: run application with 'my6DOFFoam'

프 🕨 🗉 프

< 🗇 🕨

Introduction	Theory	Algorithm ○ ●	Result	Discussion and Improvements
Possible Alterations				
Alterations				

Initial Values

- accelLim Limits the motion due to the Forces and Moments.
- Under-relaxation in
- Mesh blockMesh and snappyHexMesh

ъ

・ロト ・ 理 ト ・ ヨ ト ・

Introduction	Theory	Algorithm ○ ●	Result	Discussion and Improvements
Possible Alterations				
Alterations				

Initial Values

- accelLim Limits the motion due to the Forces and Moments.
- Under-relaxation in
- Mesh blockMesh and snappyHexMesh

3

Introduction	Theory	Algorithm ○ ●	Result	Discussion and Improvements
Possible Alterations				
Alterations				

- Initial Values
- accelLim Limits the motion due to the Forces and Moments.
- Under-relaxation in
- Mesh blockMesh and snappyHexMesh

3

ヘロン 人間 とくほ とくほ とう

Introduction	Theory	Algorithm ○ ●	Result	Discussion and Improvements
Possible Alterations				
Alterations				

- Initial Values
- accelLim Limits the motion due to the Forces and Moments.
- Under-relaxation in
- Mesh blockMesh and snappyHexMesh

ъ

ヘロト 人間 ト ヘヨト ヘヨト

Introduction	Theory	Algorithm o o	Result	Discussion and Improvements
Set up				

Domain - 40 meter kub with 6 meter cube in the origo

- BC's slip and reflecting walls, movingWallVelocity for the cube
- Initial values

ъ

ヘロト ヘアト ヘビト ヘビト

Introduction	Theory	Algorithm o o	Result	Discussion and Improvements
Set up				

- Domain 40 meter kub with 6 meter cube in the origo
- BC's slip and reflecting walls, movingWallVelocity for the cube
- Initial values

프 🕨 🗉 프

Introduction	Theory	Algorithm o o	Result	Discussion and Improvements
Set up				

- Domain 40 meter kub with 6 meter cube in the origo
- BC's slip and reflecting walls, movingWallVelocity for the cube
- Initial values

프 🕨 🗆 프

Introduction	Theory	Algorithm o o	Result	Discussion and Improvements

Result: cube at initial timestep

Figure: Time 0

ъ

イロン 不同 とくほ とくほ とう

Introduction	Theory

Algorithm

Result

Discussion and Improvements

Result: cube is tilted and begining to turn

Figure: Time 6 seconds

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Erik Ekedahl OpenFOAM

ъ

Introduction	Theory	Algorithm 0 0	Result

Discussion and Improvements

Result: cube just before divergence

Figure: Time 10 seconds

A D > A B > A

Introduction	Theory	Algorithm o o	Result	Discussion and Improvements

This is a first draft

- Unstable without proper damping
- Skewed cells

ъ

ヘロト 人間 とくほとくほとう

Introduction	Theory	Algorithm o o	Result	Discussion and Improvements

This is a first draft

- Unstable without proper damping
- Skewed cells

ъ

イロン イボン イヨン イヨン

Introduction	Theory	Algorithm o o	Result	Discussion and Improvements

This is a first draft

- Unstable without proper damping
- Skewed cells

ъ

イロン イボン イヨン イヨン

Introduction	Theory	Algorithm o o	Result	Discussion and Improvements

Improvements

Spring-damping

- Optimize under-relaxation
- Automate calculation of inertia and center of gravity

ъ

イロト 不得 とくほ とくほとう

Introduction	Theory	Algorithm o o	Result	Discussion and Improvements

Improvements

- Spring-damping
- Optimize under-relaxation
- Automate calculation of inertia and center of gravity

ъ

Introduction	Theory	Algorithm o o	Result	Discussion and Improvements

- Spring-damping
- Optimize under-relaxation
- Automate calculation of inertia and center of gravity

э

イロン イボン イヨン イヨン