Natural Convection Boundary Layer

- Natural convective heat transfer from a hot cylincer to the surrounding air.
- The buoyantSimpleFoam solver is a steady state solver for buoyant turbulent, compressible flow used for ventilation and heat transfer.
- The axisymmetric nature of flow gives us a simplified field to solve.

Geometry

• The size of the field is $1.5m \times 0.6m \times 45^{\circ}$

Mesh Generation

• The blockMeshDict was modified to define 4 blocks with graded mesh and curved edges.The defined patches are as below:

wall pipeWall (cyclic cyclicRightAndLeft
(0 9 12 3)	(
(3 12 15 6)	(0 3 4 1)
)	(1 4 5 2)
wall tunnelWall ((3 6 7 4)
(5 8 17 14)	(4785)
)	(9 10 13 12)
wall downWall ((10 11 14 13)
(0 1 10 9)	(12 13 16 15)
(1 2 11 10)	(13 14 17 16)
))
	patch inlet
	(
	(2 5 14 11)
)
	patch outlet
	(
	(6 15 16 7)
	(7 16 17 8)

)

Boundary Condition

- Cylinder wall temperature is fixed to T = 360.
- Tunnel wall temperature is fixed to T = 290
- Top and bottom has the zeroGradient boundary condition.
- Velocity at all walls has a fixed zero value.
- All the properties on the cyclic boundaries are cyclic without any values.
- The turbulence properties(ϵ, k) are given a zeroGradient boundary condition.
- Because none of the boundary conditions for inlet and outlet hase converged, they also have been treated as wall boundary condition.

Initial Condition

- Temperature initial condition is fixed to a uniform temperature equal to the ambient temperature T = 290.
- Pressure is set to the reference pressure ($10^5 pa$).
- The velocity initial condition is also a uniform zero velocity field.
- The turbulence properties are calculated based on the maximum fluctuating velocity expected in the field considering a turbulence intensity of 10% as below:

$$U_{max} = 0.5 \frac{m}{s} \implies u' = 0.05 \frac{m}{s} \implies k = \frac{3}{2}(0.05)^2 = 0.00375 \frac{m^2}{s^2}$$

and if we estimate the turbulent length scale as the maximum thickness of boundary layer $\approx 0.05m$. we can estimate the dissipation as below:

$$\epsilon = \frac{C_{\mu}^{0.75} k^{1.5}}{l} = 0.00075 \ \frac{m^2}{s^3}$$

Discretization Scheme

The discretization scheme is set in the file fvScheme as follow:

- ddtScheme should be steadyState.
- gradSchemes is set to linear scheme.
- divSchemes are set to Gauss upwind.
- laplacianSchemes are selected as linear.
- The selected RAS turbulence model is k-Epsilon model with the coefficients as below:

Cmu	0.09;
C1	1.44;
C2	1.92;
C3	0.85;
alphah	1;
alphak	1;
alphaEps	0.76923;

• Velocity-pressure coupling method is SIMPLE method and the under-relaxation of the solution is required since the problem is steady.

Solving the Equations

- In controlDict, the time step deltaT should be set to 1 to act as a counter.
- The endTime is set to a big number to allow the solution to converge.
- The convergence can be monitored by the pyFoamPlotWatcher.py. We run this in a separate terminal window:
 - \$ touch log
 - \$ pyFoamPlotWatcher.py log
- The solver that we use in this simulation is buoyantSimpleFoam:
 - \$ buoyantSimpleFoam >&log
- First run was in a coarse mesh with 12800 cells and then the result mapped into a finer mesh with 48000 cells.
 - \$ mapFields ../NC_coarse -consistent

Abolfazl Shiri

Results

Abolfazl Shiri

Results

Abolfazl Shiri

Results

