
i
oStru
tFoamA Fluid-Stru
ture Intera
tion SolverPhilip EvegrenApril 14, 2008i
oStru
tFoam is a �uid-stru
ture intera
tion (FSI) solver made for smalldeformations. As it is stated under the des
ription paragraph of the sour
e
ode �le (i
oStru
tFoam.C) it is a 
ombination of the transient in
ompress-ible laminar solver i
oFoam and the stress analysis solver solidDispla
ement-Foam, with 
oupling based on an idea from 
onjugateFoam. First the solverwill be des
ribed and 
ompared to the pre-existing solvers i
oFoam and solid-Displa
ementFoam, the new added 
ode, i.e. the 
oupling, will be empha-sized. After that a simple 
ase, taken from the Wiki, will be explained andrun.1 SolverThe solver thus 
ombines two pre-existing solvers of openfoam for a newspe
i�
 purpose, namely �uid-stru
ture intera
tion. This is one of the basi
ideas of openfoam, i.e. to taylor a new solver, from the pre-existing ones,that ful�lls the spe
i�
 purpose of the user. Combining di�erent solversmay be more or less di�
ult depending on whi
h solvers that should be
ombined and what the new solver should do (and o� 
ourse depending onthe previous C++ and OpenFOAM knowledge). In this 
ase the tri
ky partis the 
oupling between the solid part of the mesh and the �uid part of themesh.As des
ribed in the introdu
tory text the �uid part of the solver is basedon i
oFoam whi
h is a solver for transient laminar �ow, the solid part isbased on solidDispla
ementFoam. Example 
ases of both these solvers arefound in the Users Guide under the Tutorial 
hapter. It will therefore beassumed that the 
ases of those two solvers are known before, also that theuser have some knowledge about the 
ontent of the sour
e �les for those two
ases.As mentioned above the 
oupling is based on an idea from 
onjugateFoamwhi
h solves a di�usion equation in two di�erent regions, with 
oupling be-tween them at one boundary. The major 
ontribution to i
oStru
tFoam from
onjugateFoam, as far as the author sees it, is how to treat the two regions1



in the sour
e �les and in the 
ase �les. Te
hni
ally two meshes are produ
edwhi
h are overlapping at 
ertain pat
hes, as the user wishes. These are thenput in di�erent polyMesh dire
tories, one for region 1 and one for region 2,respe
tively. Further 
ase details will be des
ribed in the next se
tion.1.1 The CodeThe solver dire
tory 
ontains several additional �les as 
ompared to the di-re
tories of i
oFoam and solidDispla
ementFoam, whi
h will be des
ribed ormentioned as they appear while going through the main 
ode in i
oStru
-Foam.C. The 
ode of this �le is shown in appendix A.The �le starts with several in
lude statements as all the other Open-FOAM solvers. The �rst two statements are also found in the old solvers,most other in
lude �les are new and do the following (with reservation forthe misunderstanings of the author).
• �xedValueFvPat
hFields.H type de�ning the �xedValue pat
hes tos
alar, tensor et
 (in
luded in fvCFD.H).
• tra
tionDispla
ement/tra
tionDispla
ementFvPat
hVe
torField.Hde
laration of the tra
tionDispla
ement boundary 
ondition.
• fvMesh.H Mesh data de
larations (in
luded in fvCFD.H).
• primitivePat
hInterpolation.H de
laration of interpolation fun
-tions from points to fa
es and vi
e ver
a.
• motionSolver.H de
laration of mesh-motion solver.Then 
omes the main part of the program, whi
h is initiated by in
ludingseveral �les into the 
ode as follows. The �rst two �les are found in both oldsolvers and are therefore omitted here.
• 
reateMeshes.H 
reates meshes for �uid region and solid region re-spe
tively (same thing as 
reateMesh.H).
• readMe
hani
alProperties.H reading the me
hani
aleProperties di
-tionary and 
omputing some parameters (same as for sDF).
• readStressedFoamControls.H reading �stressAnalysis� subdi
tionaryof fvSolution in region 2 (solid region).
• readThermalProperties.H reading thermal properties and 
omput-ing parameters (same as for sDF).
• 
reateI
oFields.H 
reate �elds for �uid domain (same as 
reate-Fields.H in iF). 2



• 
reateStru
tureFields.H 
reate �elds for solid domain (same as 
re-ateFields.H in sDF).
• readCoupling.H read �
ouplingParameters� �le in 
onstant/region2/.Identifying the 
oupled pat
hes and 
he
king that the meshes are nextto ea
h other. Set original fa
e 
oordinates, oldPoints, for 
ommon�uid pat
h.
• 
reateMeshMotion.H initializes mesh motion solver and if it is dis-pla
ement based or not. Initial displa
ement is set.
• initContinuityErrs.H found in iF.After those initilization rows we are going straight into the mesh motionand 
oupling part of the 
ode whi
h is new for this solver. The time 
ounteris �rst started, then another for loop is found whi
h 
he
k with the valuespe
i�ed in the previously mentioned �
ouplingParameter� �le whether meshmotion should be started yet or not. If it sould be started the previouslyread or set displa
e value, of the solid side, is given to the variable dispVals.maxDist and maxAway are initialized to −1 · 1010. Then if the motion solveris displa
ement based we are going into the next if statement. There theboundary pat
hes of the 
ellDispla
ement �le, of the �uid side, are given thereferen
e variable meshDispla
ement, whereafter it is 
he
ked if the �uid sideboundary towards the solid boundary is movable.The displa
ement of the �uid side of the 
ommon pat
h is given thereferen
e name mDisp. A motion relaxation fa
tor is then introdu
ed, takenfrom the �
ouplingParameter� �le again.Then a loop is started that loops through all elements of the �uid side ofthe boundary pat
h towards the solid side. In the loop the solid fa
e label is�rst ex
hanged to the 
orresponding �uid fa
e label. The 
oordinates of fa
e
enters and initial fa
e 
enters (oldPoints) of this pat
h are listed, where-after the displa
ement of the 
orresponding solid pat
h is listed. The totaldispla
ement is then 
omputed based on the solid pat
h displa
ement, therelaxation fa
tor and the new and inital fa
e 
enter 
oordinates, whereafterthe referen
e variable mDisp is given this value. In mathemati
al terms thedispla
ement is 
omputed as

Dtot = Df + (P − Pold)(1 − f); (1)where Dtot is the total displa
ement, D is the solid side displa
ement, f isthe relaxation fa
tor, P is the new 
oordinate of the fa
e 
enter and Pold isthe initial 
oordinate of the fa
e 
enter.After the displa
ement is set the total maximum displa
ement and the
urrent maximum displa
ement are 
omputed.Then follows an else statement, whereafter the same pro
edure is per-formed, but instead based on a motion based mesh motion solver. As far as3



I understand only one of them is used and therefore I only des
ribe one ofthem. The 
odes are very similar anyway.After the else statement the new points are 
omputed based on a lapla
ianmesh motion solver and then follows the regular i
oFoam solver and thesolidDispla
ement solver. The i
oFoam 
omputations are made on mesh 1and solidDispla
ementFoam on mesh 2.I
oFoam solves the Navier-Stoke's equations and 
ouples the momentum�eld to the 
ontinuity equation and pressure by the PISO formulation. TheNavier-Stokes equations and the 
onitunity equation for in
ompressible �oware given by (2).
∂ui

∂t
+

∂uiuj

∂xj
− ν ∂2ui

∂xj∂xj
= −

1
ρ

∂p
∂xi

∂ui

∂xi
= 0

(2)solidDispla
ementFoam solves the following form of Navier's equationsfor the solid region.
∂2Di

∂t2
=

∂

∂xj
(2µ + λ)

∂Di

∂xj
+

∂σij

∂xj
(3)where µ = E

2(1+ν) and λ = νE
(1+ν)(1−2ν) .After the solidDispla
ementFoam solver has been run the pressure fromthe �uid solver is written to the solid side of the boundary, before the nexttime step is initiated.The solver may be 
on
luded as doing the following in every time step:1. The �uid mesh is deformed a

ording to the displa
ement of the solidboundary.2. The �ow is solved for in the deformed �uid region.3. The deformation of the solid region is solved for, based on the pressuredistribution at the solid/�uid interfa
e from previous timestep.4. The pressure is transferred from the �uid to the solid region.2 CaseThis 
ase is also downloaded from sour
eforge and 
onsists of a 2D de-formable 
hannel. The domain is shown in �gure 1, where the upper greenpart is the solid region and the lower bla
k part is the �uid region. The lowerside of the �uid domain and the upper side of the solid domain are de�nedas stationary walls. The �ow through the �uid domain is steady from theleft to the right.This part of the tutorial will show one example how to implement thepreviously des
ribed solver, in
luding treatment of multiple meshes withOpenFOAM. Again, it is presumed that the user is allready familiar with the4



Figure 1: The 
omputational mesh, where the upper part is for the solidpart and the lower is for the �uid part.two tutorials 
overing the i
oFoam and the solidDispla
ementFoam solversin the Users Guide.2.1 Pre-pro
essingThe solver and the 
ase �les are downloaded from sor
eforge using the follow-ing statement: svn 
he
kout https://openfoam-extend.svn.sour
eforge.net/svnroot/openfoam-extend/trunk/Breeder/solvers/other/I
oStru
tFoam/. This version of thesolver is made for OpenFOAM-1.4.1, there is another older version for OpenFoam-1.3 on the OpenFOAM Wiki, whi
h also 
ontains some information 
en
ern-ing multiple meshes and the 
ase des
ribed here.After the 
ode and 
ase �les have been downloaded the 
ode needs to be
ompiled in order for it to run. This is done by going to the i
oStru
tFoamsolver dire
tory, where the Make dire
tory is, and typing wmake.2.1.1 Mesh generationAfter the solver and the Case 
alled i
oStru
tFoamTest have been down-loaded the meshes should be generated. However, as this 
ase 
ontains mul-tiple meshes the standard blo
kMesh utility 
an not be used as usual. Thereason is that a polyMesh dire
tory is not found under the 
onstant dire
-tory, but the the two polyMesh dire
tories are found under 
onstant/region1/5



and 
onstant/region2/, for the �uid and solid regions respe
tively. In orderthen to tri
k the blo
kMesh utility, soft links are 
reated, whereafter theblo
kMesh utility is run. The 
ode reads:ln -s region1/polyMesh/ i
oStru
tFoamTest/
onstant/polyMeshblo
kMesh . i
oStru
tFoamTestrm i
oStru
tFoamTest/
onstant/polyMeshln -s region2/polyMesh/ i
oStru
tFoamTest/
onstant/polyMeshblo
kMesh . i
oStru
tFoamTestrm i
oStru
tFoamTest/
onstant/polyMeshThe blo
kMeshDi
t �le des
ribes the verti
es, blo
ks, edges and pat
hes,as for the previous tutorials. Also, as for the previous tutorials this is a 2D
ase, so the front and ba
k are de�ned as empty. The other pat
hes are
alled inlet, outlet, top and bottom, for both mesh parts.2.1.2 Boundary & initial 
onditionsThe initial and boundary 
onditions are lo
ated under 0/region1/ and 0/re-gion2/ for the two regions. Region 1 is the �uid region and region 2 thesolid. For the �uid region the pressure and velo
ity �eld needs to be spe
i-�ed, but also the initial displa
ement or motion of the �uid region needs tobe spe
i�ed. The pressure is set in �le p to zeroGradient for bottom, top andinlet, to empty for frontandba
k, and to �xedValue Uniform 0 for the outlet.InternalField is set to uniform 0. The velo
ity is set in �le U to �xedValue0 for the bottom and top (no slip 
ondition), zeroGradient for outlet, �xed-Value uniform (0.005 0 0) at the inlet, and empty for frontandba
k. Internal�eld is again set to uniform (0 0 0).Now, the motion solver will either be motion driven or dipla
ementdriven, and as the 
ode was des
ribed before it will here be displa
ementdriven. The 
ellMotionU and pointMotionU �les are therefore not neededand will not be des
ribed any further. The 
ellDispla
ement �le des
ribesthe displa
ement of the 
ell 
enters and pointDispla
ement des
ribes themotion of the verti
es. In both �les the inlet and outlet are de�ned as ze-roGradient, the bottom is de�ned as �xedValue uniform (0 0 0). The top isde�ned as zeroGradient for the points and �xedValue uniform (0 0 0) for the
ell 
enters. The frontandba
k are again empty.

6



For region 2 the displa
ement is set in �le D. The internal �eld is set touniform (0 0 0), the other pat
hes are de�ned asbottom{type tra
tionDispla
ement;tra
tion uniform (0 0 0);pressure uniform 0;value uniform (0 0 0);}top{type �xedValue;value uniform (0 0 0);}frontAndBa
k{type empty;}inlet{// type tra
tionDispla
ement;// tra
tion uniform (0 0 0);// pressure uniform 0;type �xedValue;value uniform (0 0 0);}outlet{type tra
tionDispla
ement;tra
tion uniform (0 0 0);pressure uniform 0;value uniform (0 0 0);}Note that the top pat
h is 
hanged from the original setting, otherwisethe solver will 
rash. The other �le, T, is where the temperature details arespe
i�ed, however, here the 
ase is isothermal at 300 K, and therefore thetemperature �eld is not very interesting. Still the temperature has to be setto 300 K in the T �le.2.1.3 Physi
al propertiesThe physi
al properties for the �uid region is only for the kinemati
 vis
ositywhi
h is set to ν = 10−4 m2/s. For the solid region the density, ρ = 7854
kg/m3, Poisson ratio, ν = 0.3 and the bulk modulus, E = 10−2 kg/(ms2)7



are set in the me
hani
alProperties �le. Here it is also spe
i�ed that theplane stress assumption should be used. In the thermalProperties �le thermalproperties are spe
i�ed, but those are not used here and will not be des
ribed.Also the transportproperties in the region2 dire
tory do not seem to be used.2.1.4 ControlIn the 
ontrolDi
t �le the time step deltaT is set to 0.001, end time to 1 andthe write 
ontrol keyword to runTime and the writeInterval to 0.01.2.1.5 Des
retization & linear solver settingsAs for the other tutorials these settings are not dis
ussed in detail, but in ad-dition to previous solvers the �les here 
ontain details about the mesh motionvariables, and may be viewed in the 
orresponding dire
tories, respe
tively.2.1.6 Coupling settingsUnder 
onstant/region1/ the �le dynami
MeshDi
t is found. This �le spe
-i�es that we have 2D-motion and that the mesh motion should be solvedusing a Lapla
ian solver with uniform di�usivity. The 
orresponding dire
-tory for region 2 
ontains the �le 
ouplingParameters, whi
h spe
i�es whi
hpat
hes that should be 
oupled, at what time point mesh motion should betaken into a

ount and if a relaxation parameter should be spe
i�ed for themesh motion.2.2 Running an appli
ationThe solver with the set up 
ase is then run in the same way as before using<solver> <path> <
ase>, or with some other additional 
ommands. If, forexample, the 
ase is 
alled isf and we are standing in the parent dire
tory ofthe 
ase dire
tory, the 
ommand would be i
oStru
tFoam . isf.2.3 Post-pro
essingThe multi-mesh results 
an not either be viewed with paraFoam as the pre-vious 
ases. Therefore OpenFOAM needs to be tri
ked again in order tomake the results viewable with paraview. Use the following 
ommands:foamToVTK . i
oStru
tFoamTest -mesh region1foamToVTK . i
oStru
tFoamTest -mesh region2(Before typing the 
ommand for region2, the boundary 
ondition alongthe top wall for T needs to be 
hanged from symmetryPlane to zeroGradient,otherwise the utility will not work.)Now, VTK-�les have been written into the VTK dire
tory. The data arethen viewed by laun
hing paraview and open the wanted �les. Figure 2 show8



the displa
ement by 
olor of the solid mesh. In order to deform (warp) themesh it seems like point data are needed, whi
h was not saved. Thereforeonly 
ell values 
an be viewed, and the mesh in its undeformed shape.

Figure 2: Displa
ement of the solid mesh shown by the 
olor �eld.On the other hand, for the �uid mesh the displa
ement 
an be viewedand is shown in �gure 3, where again the 
olor shows the displa
ement.Comparing the pressure �eld, �gure 4, to the magnitude of the stresstensor, �gure 5, of the solid domain 
on�rms the relation between the two.The last �gure, �gure 6, shows the velo
ity magnitude in the �uid do-main.

9



Figure 3: Displa
ement of the solid mesh shown by the 
olor �eld.

Figure 4: Pressure �eld of the �uid domain.10



Figure 5: Magnitude of the stress tensor of the solid domain.

Figure 6: Velo
ity magnitude of the �uid domain.11



A Main Code of i
oStru
tFoam
/*---------------------------------------------------------------------------*\
##   ####  ######     |
##  ##     ##         | Copyright: ICE Stroemungsfoschungs GmbH
##  ##     ####       |
##  ##     ##         | http://www.ice-sf.at
##   ####  ######     |
-------------------------------------------------------------------------------
=========                 |
\\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox
\\    /   O peration     |
\\  / A nd           | Copyright (C) 1991-2005 OpenCFD Ltd.
\\/     M anipulation  |

-------------------------------------------------------------------------------
License

This file is based on OpenFOAM.

OpenFOAM is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2 of the License, or (at your
option) any later version.

OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with OpenFOAM; if not, write to the Free Software Foundation,
Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Application
icoStructFoam

Description
Transient solver for incompressible, laminar flow of Newtonian fluids
coupled with structural mechanics

Based on icoFoam and solidDisplacementFoam
Coupling after an idea by conjugateFoam

ICE Revision: $Id:
/local/openfoam/branches/WikiVersions/FluidStructCoupling/icoStructFoam/icoStructFoam.C 1906 2007-08-
28T16:16:19.392553Z bgschaid  $
\*---------------------------------------------------------------------------*/

#include "fvCFD.H"
#include "Switch.H"
#include "fixedValueFvPatchFields.H"
#include "tractionDisplacement/tractionDisplacementFvPatchVectorField.H"
#include "fvMesh.H"
#include "PrimitivePatchInterpolation.H"
#include "motionSolver.H"

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

int main(int argc, char *argv[])
{

#   include "setRootCase.H"

#   include "createTime.H"

12



#   include "createMeshes.H"

#   include "readMechanicalProperties.H"
#   include "readStressedFoamControls.H"
#   include "readThermalProperties.H"

#   include "createIcoFields.H"
#   include "createStructureFields.H"

#   include "readCoupling.H"

#   include "createMeshMotion.H"

#   include "initContinuityErrs.H"

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

Info<< "\nStarting time loop\n" << endl;

for (runTime++; !runTime.end(); runTime++)
{

Info<< "Time = " << runTime.timeName() << nl << endl;

if(runTime.value()>=startMeshMotion.value()) {
Info << "\nMoving mesh\n" << endl;

// Make the fluxes absolute
//          fvc::makeAbsolute(phi, U);

// dispVals=inter.faceToPointInterpolate(displace);
dispVals=displace;

scalar maxDist=-1e10;
scalar maxAway=-1e10;

if(displacementMotionSolver) {
volVectorField::GeometricBoundaryField &meshDisplacement=

const_cast<volVectorField&>(mesh1.objectRegistry::lookupObject<volVectorField>("cellDisplacement")).bou
ndaryField();

if(typeid(meshDisplacement[fluidSideI])!=typeid(fixedValueFvPatchField<vector>)) {
FatalErrorIn("Coupled Solver ") << "Fluid side not movable" << exit(FatalError);

}

vectorField &mDisp=refCast<vectorField>(meshDisplacement[fluidSideI]);

scalar factor=1/motionRelaxation.value();

forAll(fluidMesh,fluidI) {
label solidI=exchange[fluidI];

// vector here=mesh1.points()[fluidPoints[fluidI]];
vector here=fluidMesh.faceCentres()[fluidI];
vector old =oldPoints[fluidI];
vector disp=dispVals[solidI];
vector neu=disp*factor+(here-old)*(1-factor);
vector move=neu;

mDisp[fluidI]=move;

displacement based
mesh motion

13



if(mag(here-old)>maxDist) {
maxDist=mag(here-old);

}
if(mag(neu-here)>maxAway) {

maxAway=mag(here-neu);
}

}

} else {
volVectorField::GeometricBoundaryField &motionU=

const_cast<volVectorField&>(mesh1.objectRegistry::lookupObject<volVectorField>("cellMotionU")).boundary
Field();

if(typeid(motionU[fluidSideI])!=typeid(fixedValueFvPatchField<vector>)) {
FatalErrorIn("Coupled Solver ") << "Fluid side not movable" << exit(FatalError);

}

vectorField &patchU=refCast<vectorField>(motionU[fluidSideI]);

// tetPointVectorField neu=inter.faceToPointInterpolate(patchU);
scalar factor=1/(runTime.deltaT().value()*motionRelaxation.value());
//          const labelList& fluidPoints=fluidPatch.meshPoints();

// forAll(fluidPoints,fluidI) {
forAll(fluidMesh,fluidI) {

label solidI=exchange[fluidI];

// vector here=mesh1.points()[fluidPoints[fluidI]];
vector here=fluidMesh.faceCentres()[fluidI];
vector old =oldPoints[fluidI];
vector disp=dispVals[solidI];
vector neu=disp+old;
vector move=factor*(neu-here);

patchU[fluidI]=move;

if(mag(here-old)>maxDist) {
maxDist=mag(here-old);

}
if(mag(neu-here)>maxAway) {

maxAway=mag(here-neu);
}

}
}

mesh1.movePoints(motionPtr->newPoints());
//          U.correctBoundaryConditions();

Info << "\nBiggest movement: " << maxDist << " Bigges divergence " << maxAway <<  endl;

// Make the fluxes relative
//          fvc::makeRelative(phi, U);
}

Info << "Solving flow in mesh1\n" << endl;
{

#         include "readPISOControls.H"
#         include "CourantNo.H"

fvVectorMatrix UEqn

displacement based
mesh motion

motion based
mesh motion

icoFoam

14



(
fvm::ddt(U)
+ fvm::div(phi, U)
- fvm::laplacian(nu, U)
);

solve(UEqn == -fvc::grad(p));

// --- PISO loop

for (int corr=0; corr<nCorr; corr++)
{
volScalarField rUA = 1.0/UEqn.A();

U = rUA*UEqn.H();
phi = (fvc::interpolate(U) & mesh1.Sf())
+ fvc::ddtPhiCorr(rUA, U, phi);

adjustPhi(phi, U, p);

for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
{
fvScalarMatrix pEqn
(
fvm::laplacian(rUA, p) == fvc::div(phi)
);

pEqn.setReference(pRefCell, pRefValue);
pEqn.solve();

if (nonOrth == nNonOrthCorr)
{
phi -= pEqn.flux();

}
}

#             include "continuityErrs.H"

U -= rUA*fvc::grad(p);
U.correctBoundaryConditions();

}

}

Info << "\nSolving structure in mesh2\n" << endl;

{
#         include "readStressedFoamControls.H"

int iCorr = 0;
scalar initialResidual = 0;

do
{
if (thermalStress)

{
volScalarField& T = Tptr();
solve

(
fvm::ddt(T) == fvm::laplacian(DT, T)

);
}

solidDisplacementFoam

icoFoam

15



{
fvVectorMatrix DEqn

(
fvm::d2dt2(D)
==
fvm::laplacian(2*mu + lambda, D, "laplacian(DD,D)")
+ divSigmaExp

);

if (thermalStress)
{

const volScalarField& T = Tptr();
DEqn += threeKalpha*fvc::grad(T);

}

//UEqn.setComponentReference(1, 0, vector::X, 0);
//UEqn.setComponentReference(1, 0, vector::Z, 0);

initialResidual = DEqn.solve().initialResidual();

if (!compactNormalStress)
{

divSigmaExp = fvc::div(DEqn.flux());
}

}
{

volTensorField gradD = fvc::grad(D);
sigmaD = mu*twoSymm(gradD) + (lambda*I)*tr(gradD);

if (compactNormalStress)
{

divSigmaExp =
fvc::div(sigmaD - (2*mu + lambda)*gradD, "div(sigmaD)");

}
else
{

divSigmaExp += fvc::div(sigmaD);
}

}

} while (initialResidual > convergenceTolerance && ++iCorr < nCorr);

#       include "calculateStress.H"

Info << "\nMaximum Displacement: " << max(mag(D)).value() << endl;

}

Info << "\nCoupling the solutions\n" << endl;

scalarField & fluidP = p.boundaryField()[fluidSideI];

scalarField &solidP = displace.pressure();

forAll(fluidP,fI) {
solidP[exchange[fI]]=-fluidP[fI];

}

#       include "write.H"

solidDisplacementFoam

coupling pressure

16


