1icoStructFoam
A Fluid-Structure Interaction Solver

Philip Evegren

April 14, 2008

icoStructFoam is a fluid-structure interaction (FSI) solver made for small
deformations. As it is stated under the description paragraph of the source
code file (icoStructFoam.C) it is a combination of the transient incompress-
ible laminar solver icoFoam and the stress analysis solver solidDisplacement-
Foam, with coupling based on an idea from conjugateFoam. First the solver
will be described and compared to the pre-existing solvers icoFoam and solid-
DisplacementFoam, the new added code, i.e. the coupling, will be empha-
sized. After that a simple case, taken from the Wiki, will be explained and
run.

1 Solver

The solver thus combines two pre-existing solvers of openfoam for a new
specific purpose, namely fluid-structure interaction. This is one of the basic
ideas of openfoam, i.e. to taylor a new solver, from the pre-existing ones,
that fulfills the specific purpose of the user. Combining different solvers
may be more or less difficult depending on which solvers that should be
combined and what the new solver should do (and off course depending on
the previous C++ and OpenFOAM knowledge). In this case the tricky part
is the coupling between the solid part of the mesh and the fluid part of the
mesh.

As described in the introductory text the fluid part of the solver is based
on icoFoam which is a solver for transient laminar flow, the solid part is
based on solidDisplacementFoam. Example cases of both these solvers are
found in the Users Guide under the Tutorial chapter. It will therefore be
assumed that the cases of those two solvers are known before, also that the
user have some knowledge about the content of the source files for those two
cases.

As mentioned above the coupling is based on an idea from conjugateFoam
which solves a diffusion equation in two different regions, with coupling be-
tween them at one boundary. The major contribution to icoStructFoam from
conjugateFoam, as far as the author sees it, is how to treat the two regions

in the source files and in the case files. Technically two meshes are produced
which are overlapping at certain patches, as the user wishes. These are then
put in different polyMesh directories, one for region 1 and one for region 2,
respectively. Further case details will be described in the next section.

1.1 The Code

The solver directory contains several additional files as compared to the di-
rectories of icoFoam and solidDisplacementFoam, which will be described or
mentioned as they appear while going through the main code in icoStruc-
Foam.C. The code of this file is shown in appendix A.

The file starts with several include statements as all the other Open-
FOAM solvers. The first two statements are also found in the old solvers,
most other include files are new and do the following (with reservation for
the misunderstanings of the author).

e fixedValueFvPatchFields.H type defining the fixedValue patches to
scalar, tensor etc (included in fvCFD.H).

e tractionDisplacement /tractionDisplacementFvPatchVectorField.H

declaration of the tractionDisplacement boundary condition.
e fvMesh.H Mesh data declarations (included in fvCFD.H).

e primitivePatchInterpolation.H declaration of interpolation func-
tions from points to faces and vice verca.

e motionSolver.H declaration of mesh-motion solver.

Then comes the main part of the program, which is initiated by including
several files into the code as follows. The first two files are found in both old
solvers and are therefore omitted here.

e createMeshes.H creates meshes for fluid region and solid region re-
spectively (same thing as createMesh.H).

e readMechanicalProperties.H reading the mechanicaleProperties dic-
tionary and computing some parameters (same as for sDF).

e readStressedFoamControls.H reading "stressAnalysis” subdictionary
of fvSolution in region 2 (solid region).

e readThermalProperties.H reading thermal properties and comput-
ing parameters (same as for sDF).

e createlcoFields.H create fields for fluid domain (same as create-
Fields.H in iF).

e createStructureFields.H create fields for solid domain (same as cre-
ateFields.H in sDF).

e readCoupling.H read "couplingParameters” file in constant /region2/.
Identifying the coupled patches and checking that the meshes are next
to each other. Set original face coordinates, oldPoints, for common
fluid patch.

e createMeshMotion.H initializes mesh motion solver and if it is dis-
placement based or not. Initial displacement is set.

e initContinuityErrs.H found in iF.

After those initilization rows we are going straight into the mesh motion
and coupling part of the code which is new for this solver. The time counter
is first started, then another for loop is found which check with the value
specified in the previously mentioned "couplingParameter” file whether mesh
motion should be started yet or not. If it sould be started the previously
read or set displace value, of the solid side, is given to the variable disp Vals.
mazDist and mazAway are initialized to —1-10'°. Then if the motion solver
is displacement based we are going into the next if statement. There the
boundary patches of the cellDisplacement file, of the fluid side, are given the
reference variable meshDisplacement, whereafter it is checked if the fluid side
boundary towards the solid boundary is movable.

The displacement of the fluid side of the common patch is given the
reference name mDisp. A motion relaxation factor is then introduced, taken
from the “couplingParameter file again.

Then a loop is started that loops through all elements of the fluid side of
the boundary patch towards the solid side. In the loop the solid face label is
first exchanged to the corresponding fluid face label. The coordinates of face
centers and initial face centers (oldPoints) of this patch are listed, where-
after the displacement of the corresponding solid patch is listed. The total
displacement is then computed based on the solid patch displacement, the
relaxation factor and the new and inital face center coordinates, whereafter
the reference variable mDisp is given this value. In mathematical terms the
displacement is computed as

Doy = Df + (P — Pya)(1 — f); (1)

where Dy, is the total displacement, D is the solid side displacement, f is
the relaxation factor, P is the new coordinate of the face center and P, is
the initial coordinate of the face center.

After the displacement is set the total maximum displacement and the
current maximum displacement are computed.

Then follows an else statement, whereafter the same procedure is per-
formed, but instead based on a motion based mesh motion solver. As far as

I understand only one of them is used and therefore I only describe one of
them. The codes are very similar anyway.

After the else statement the new points are computed based on a laplacian
mesh motion solver and then follows the regular icoFoam solver and the
solidDisplacement solver. The icoFoam computations are made on mesh 1
and solidDisplacementFoam on mesh 2.

IcoFoam solves the Navier-Stoke’s equations and couples the momentum
field to the continuity equation and pressure by the PISO formulation. The
Navier-Stokes equations and the conitunity equation for incompressible flow
are given by (2).

ou; 4 8uiuj y 82’!1,1' _ 1 Op

ot Ox; Oxz;0x; ~— pOx; (2)
dui _
ox;

solidDisplacementFoam solves the following form of Navier’s equations
for the solid region.

o*’D; 9 oD; 0ojj

L= — (2u+) — ” 3

a7~ o N gt e)
Whereu:ﬁand)\:%.

After the solidDisplacementFoam solver has been run the pressure from
the fluid solver is written to the solid side of the boundary, before the next
time step is initiated.

The solver may be concluded as doing the following in every time step:

1. The fluid mesh is deformed according to the displacement of the solid
boundary.

2. The flow is solved for in the deformed fluid region.

3. The deformation of the solid region is solved for, based on the pressure
distribution at the solid /fluid interface from previous timestep.

4. The pressure is transferred from the fluid to the solid region.

2 Case

This case is also downloaded from sourceforge and consists of a 2D de-
formable channel. The domain is shown in figure 1, where the upper green
part is the solid region and the lower black part is the fluid region. The lower
side of the fluid domain and the upper side of the solid domain are defined
as stationary walls. The flow through the fluid domain is steady from the
left to the right.

This part of the tutorial will show one example how to implement the
previously described solver, including treatment of multiple meshes with
OpenFOAM. Again, it is presumed that the user is allready familiar with the

Figure 1: The computational mesh, where the upper part is for the solid
part and the lower is for the fluid part.

two tutorials covering the icoFoam and the solidDisplacementFoam solvers
in the Users Guide.

2.1 Pre-processing

The solver and the case files are downloaded from sorceforge using the follow-
ing statement: svn checkout hitps://openfoam-extend.svn.sourceforge.net/svnroot/openfoam-
extend/trunk/Breeder/solvers/other/IcoStructFoam/. This version of the
solver is made for OpenFOAM-1.4.1, there is another older version for OpenFoam-
1.3 on the OpenFOAM Wiki, which also contains some information cencern-
ing multiple meshes and the case described here.
After the code and case files have been downloaded the code needs to be
compiled in order for it to run. This is done by going to the icoStructFoam
solver directory, where the Make directory is, and typing wmake.

2.1.1 Mesh generation

After the solver and the Case called icoStructFoamTest have been down-
loaded the meshes should be generated. However, as this case contains mul-
tiple meshes the standard blockMesh utility can not be used as usual. The
reason is that a polyMesh directory is not found under the constant direc-
tory, but the the two polyMesh directories are found under constant/region1/

and constant/region2/, for the fluid and solid regions respectively. In order
then to trick the blockMesh utility, soft links are created, whereafter the
blockMesh utility is run. The code reads:

In -s regionl/polyMesh/ icoStructFoamTest/constant/polyMesh

blockMesh . icoStructFoamTest

rm icoStructFoam Test/constant/polyMesh

In -s region2/polyMesh/ icoStructFoamTest/constant/polyMesh

blockMesh . icoStructFoamTest

rm icoStructFoam Test/constant/polyMesh

The blockMeshDict file describes the vertices, blocks, edges and patches,
as for the previous tutorials. Also, as for the previous tutorials this is a 2D
case, so the front and back are defined as empty. The other patches are
called inlet, outlet, top and bottom, for both mesh parts.

2.1.2 Boundary & initial conditions

The initial and boundary conditions are located under 0/regionl/ and 0/re-
gion2/ for the two regions. Region 1 is the fluid region and region 2 the
solid. For the fluid region the pressure and velocity field needs to be speci-
fied, but also the initial displacement or motion of the fluid region needs to
be specified. The pressure is set in file p to zeroGradient for bottom, top and
inlet, to empty for frontandback, and to fixedValue Uniform 0 for the outlet.
InternalField is set to uniform 0. The velocity is set in file U to fixedValue
0 for the bottom and top (no slip condition), zeroGradient for outlet, fixed-
Value uniform (0.005 0 0) at the inlet, and empty for frontandback. Internal
field is again set to uniform (0 0 0).

Now, the motion solver will either be motion driven or diplacement
driven, and as the code was described before it will here be displacement
driven. The cellMotionU and pointMotionU files are therefore not needed
and will not be described any further. The cellDisplacement file describes
the displacement of the cell centers and pointDisplacement describes the
motion of the vertices. In both files the inlet and outlet are defined as ze-
roGradient, the bottom is defined as fixedValue uniform (0 0 0). The top is
defined as zeroGradient for the points and fixedValue uniform (0 0 0) for the
cell centers. The frontandback are again empty.

For region 2 the displacement is set in file D. The internal field is set to
uniform (0 0 0), the other patches are defined as

bottom

{

type tractionDisplacement;

traction uniform (0 0 0);

pressure uniform 0;

value uniform (0 0 0);

/

top

{

type fixedValue;

value uniform (0 0 0);

}

frontAndBack

{

type empty;

}

inlet

{

// type tractionDisplacement;
// traction uniform (0 0 0);
// pressure uniform 0;

type fized Value;

value uniform (0 0 0);

}

outlet

{

type tractionDisplacement;

traction uniform (0 0 0);

pressure uniform 0;

value uniform (0 0 0);

/

Note that the top patch is changed from the original setting, otherwise
the solver will crash. The other file, T, is where the temperature details are
specified, however, here the case is isothermal at 300 K, and therefore the
temperature field is not very interesting. Still the temperature has to be set
to 300 K in the T file.

2.1.3 Physical properties

The physical properties for the fluid region is only for the kinematic viscosity
which is set to v = 10™* m?2/s. For the solid region the density, p = 7854
kg/m?, Poisson ratio, v = 0.3 and the bulk modulus, F = 1072 kg/(ms?)

are set in the mechanicalProperties file. Here it is also specified that the
plane stress assumption should be used. In the thermalProperties file thermal
properties are specified, but those are not used here and will not be described.
Also the transportproperties in the region2 directory do not seem to be used.

2.1.4 Control

In the controlDict file the time step deltaT is set to 0.001, end time to 1 and
the write control keyword to runTime and the writelnterval to 0.01.

2.1.5 Descretization & linear solver settings

As for the other tutorials these settings are not discussed in detail, but in ad-
dition to previous solvers the files here contain details about the mesh motion
variables, and may be viewed in the corresponding directories, respectively.

2.1.6 Coupling settings

Under constant/regionl/ the file dynamicMeshDict is found. This file spec-
ifies that we have 2D-motion and that the mesh motion should be solved
using a Laplacian solver with uniform diffusivity. The corresponding direc-
tory for region 2 contains the file couplingParameters, which specifies which
patches that should be coupled, at what time point mesh motion should be
taken into account and if a relaxation parameter should be specified for the
mesh motion.

2.2 Running an application

The solver with the set up case is then run in the same way as before using
<solver> <path> <case>, or with some other additional commands. If, for
example, the case is called isf and we are standing in the parent directory of
the case directory, the command would be icoStructFoam . isf.

2.3 Post-processing

The multi-mesh results can not either be viewed with paraFoam as the pre-
vious cases. Therefore OpenFOAM needs to be tricked again in order to
make the results viewable with paraview. Use the following commands:

foamToVTK . icoStructFoamTest -mesh regionl

foamToVTK . icoStructFoamTest -mesh region2

(Before typing the command for region2, the boundary condition along
the top wall for T needs to be changed from symmetryPlane to zeroGradient,
otherwise the utility will not work.)

Now, VTK-files have been written into the VTK directory. The data are
then viewed by launching paraview and open the wanted files. Figure 2 show

the displacement by color of the solid mesh. In order to deform (warp) the
mesh it seems like point data are needed, which was not saved. Therefore
only cell values can be viewed, and the mesh in its undeformed shape.

D Wlcgniiuclz
1.232-03 U.000232 0.0guaus Q000753 0.uuigy

Figure 2: Displacement of the solid mesh shown by the color field.

On the other hand, for the fluid mesh the displacement can be viewed
and is shown in figure 3, where again the color shows the displacement.

Comparing the pressure field, figure 4, to the magnitude of the stress
tensor, figure 5, of the solid domain confirms the relation between the two.

The last figure, figure 6, shows the velocity magnitude in the fluid do-
main.

120t Magniiucds
(UG5 UG L.uugs a7 0.yl

Figure 3: Displacement of the solid mesh shown by the color field.

e
0.uuin 000222 0,003 0,505

Figure 4: Pressure field of the fluid domain.

slgjrriciZe)
w2]

DNNES] 00015

g.yesiz]

—r

Figure 5: Magnitude of the stress tensor of the solid domain.

S —
—

U Magnifuclz
00092 000345 n.ousyy 0.0u7 70

—n

Figure 6: Velocity magnitude of the fluid domain.

Main Code of icoStructFoam

I* *\

Hit HiEHE |

#H H#HH O HH | Copyright: ICE Stroemungsfoschungs GmbH
Hit

#H #H H#HH | http://www.ice-sf.at

I |

I
\ / Field | OpenFOAM: The Open Source CFD Toolbox

\\' / O peration |
\\/ And | Copyright (C) 1991-2005 OpenCFD Ltd.

\V M anipulation |

License
This file is based on OpenFOAM.

OpenFOAM is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2 of the License, or (at your
option) any later version.

OpenFOAM is distributed in the hope that it will be useful, but WITHOUT

ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with OpenFOAM,; if not, write to the Free Software Foundation,
Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Application
icoStructFoam

Description
Transient solver for incompressible, laminar flow of Newtonian fluids
coupled with structural mechanics

Based on icoFoam and solidDisplacementFoam
Coupling after an idea by conjugateFoam

ICE Revision: $ld:
/local/lopenfoam/branches/WikiVersions/FluidStructCoupling/icoStructFoam/icoStructFoam.C 1906 2007-08-
28T16:16:19.392553Z bgschaid $
* */

#include "fvCFD.H"

#include "Switch.H"

#include "fixedValueFvPatchFields.H"

#include "tractionDisplacement/tractionDisplacementFvPatchVectorField.H"
#include "fvMesh.H"

#include "PrimitivePatchInterpolation.H"

#include "motionSolver.H"

JIEEEEEE A A A A A A A KKK KKKk kKK KK KK KRR KKK KKKk

int main(int argc, char *argvl[])

include "setRootCase.H"

include "createTime.H"

12

include "createMeshes.H"

include "readMechanicalProperties.H"
include "readStressedFoamControls.H"
include "readThermalProperties.H"

include "createlcoFields.H"
include "createStructureFields.H"

include "readCoupling.H"

include "createMeshMotion.H"

H* H* H* =+ = HHH HH*

include "initContinuityErrs.H"
J[KRR R Rk K Kk K Kk Kk Kk K R Kk K K Kk K
Info<< "\nStarting time loop\n" << end];
for (runTime++; lrunTime.end(); runTime++)
Info<< "Time =" << runTime.timeName() << nl << endl;

if(runTime.value()>=startMeshMotion.value()) {
Info << "\nMoving mesh\n" << endl;

/I Make the fluxes absolute
1l fvc::makeAbsolute(phi, U);

1 dispVals=inter.faceToPointInterpolate(displace);
dispVals=displace;

scalar maxDist=-1e10;

displacement based

scalar maxAway=-1e10; meSh mOtIOI’]

if(displacementMotionSolver) {
volVectorField::GeometricBoundaryField &meshDisplacement=

const_cast<volVectorField&>(mesh1.objectRegistry::lookupObject<volVectorField>
ndaryField();

if(typeid(meshDisplacement[fluidSidel])!=typeid(fixedValueFvPatchField<ve
FatalErrorIn("Coupled Solver ") << "Fluid side not movable" << exit(Fata

}
vectorField &mDisp=refCast<vectorField>(meshDisplacement[fluidSidel]);
scalar factor=1/motionRelaxation.value();

forAll(fluidMesh,fluidl) {
label solidl=exchangel[fluidl];

/I vector here=mesh1.points()[fluidPoints[fluidI]];
vector here=fluidMesh.faceCentres()[fluidl];

vector old =oldPoints][fluidl];

vector disp=dispVals[solidl];

vector neu=disp*factor+(here-old)*(1-factor);
vector move=neu;

mDispl[fluidl]=move;

13

"cellDisplacement")).bou

2ctor>)) {
Error);

if(mag(here-old)>maxDist) {

} maxDist=mag(here-old); diSplaC ment based
if(mag(neu-here)>maxAway) { .
e wayemanharana) mesh motion
}
}
}else {

const_cast<volVectorField&>(mesh1.objectRegistry::lookupObject<volVectorField>

Field();

I

volVectorField::GeometricBoundaryField &motionU=

if(typeid(motionU[fluidSidel])!=typeid(fixedValueFvPatchField<vector>)) {
}

vectorField &patchU=refCast<vectorField>(motionU[fluidSidel]);

FatalErrorin("Coupled Solver ") << "Fluid side not movable" << exit(Fata

1 tetPointVectorField neu=inter.faceToPointInterpolate(patchU);
scalar factor=1/(runTime.deltaT().value()*motionRelaxation.value());
/1 const labelList& fluidPoints=fluidPatch.meshPoints();

I forAll(fluidPoints,fluidl) {

forAll(fluidMesh, fluidl) { motion
mesh m

label solidl=exchangelfluidl];

/I vector here=mesh1.points()[fluidPoints[fluidl]];
vector here=fluidMesh.faceCentres()[fluidl];

vector old =oldPoints][fluidl];

vector disp=dispVals[solidl];

vector neu=disp+old;

vector move=factor*(neu-here);

patchUJ[fluidl]=move;

if(mag(here-old)>maxDist) {
maxDist=mag(here-old);

if(mag(neu-here)>maxAway) {
maxAway=mag(here-neu);
}
}

mesh1.movePoints(motionPtr->newPoints());

U.correctBoundaryConditions();

/I Make the fluxes relative

I
}

fvc::makeRelative(phi, U);

Info << "Solving flow in mesh1\n" << endl;

{
include "readPISOControls.H"
include "CourantNo.H"

fvVectorMatrix UEqn

14

"cellMotionU")).boundary

IError);

yased
otion

Info << "\nBiggest movement: " << maxDist << " Bigges divergence " << maxAway << endl;

icoFoam

(

fvm::ddt(U)

+ fvm::div(phi, U)

- fvm::laplacian(nu, U)

solve(UEgn == -fvc::grad(p));

/I --- PISO loop

for (int corr=0; corr<nCorr; corr++)
{voIScaIarFieId rUA = 1.0/UEgn.A();

U = rUA*UEqn.H();
phi = (fvc:interpolate(U) & mesh1.5())
+ fvc::ddtPhiCorr(rUA, U, phi); : T
icoFoam
adjustPhi(phi, U, p);
for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
fvScalarMatrix pEgn

(
fvm::laplacian(rUA, p) == fvc::div(phi)
);

pEqgn.setReference(pRefCell, pRefValue);
pEqgn.solve();

if (nonOrth == nNonOrthCorr)
{
phi -= pEqn.flux();
}
}

include "continuityErrs.H"

U -= rUA*fvc::grad(p);
U.correctBoundaryConditions();

}
}

Info << "\nSolving structure in mesh2\n" << endl;

include "readStressedFoamControls.H"
intiCorr = 0;
scalar initialResidual = 0;

do
solidDisplacementFoam

if (thermalStress)

{
volScalarField& T = Tptr();
solve

(
fvm::ddt(T) == fvm::laplacian(DT, T)

}

15

#

#

fvVectorMatrix DEgn

(
fvm::d2dt2(D)

fvm::laplacian(2*mu + lambda, D, "laplacian(DD,D)")
+ divSigmaExp
);

if (thermalStress)
const volScalarField& T = Tptr();

DEgn += threeKalpha*fvc::grad(T);
}

//UEqgn.setComponentReference(1, 0, vector::X, 0);
//UEqgn.setComponentReference(1, 0, vector::Z, 0);

initialResidual = DEgn.solve().initialResidual();

if ('compactNormalStress)

}
}

{
volTensorField gradD = fvc::grad(D);

sigmaD = mu*twoSymm(gradD) + (lambda*l)*tr(gradD);
if (compactNormalStress)

divSigmaExp =
fvc::div(sigmaD - (2*mu + lambda)*gradD, "div(sigmaD)");
}

else
divSigmaExp += fvc::div(sigmaD);

}
}

} while (initialResidual > convergenceTolerance && ++iCorr < nCorr);
include "calculateStress.H"

Info << "\nMaximum Displacement: " << max(mag(D)).value() << endl;

}

Info << "\nCoupling the solutions\n" << endl;
scalarField & fluidP = p.boundaryField()[fluidSidel];
scalarField &solidP = displace.pressure();
forAll(fluidP,fl) {

solidP[exchangel[fl]]=-fluidP[fl];
}

include "write.H"

16

divSigmaExp = fvc::div(DEqn.flux()); solid Displac

ementFoam

coupling pressure

